YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Reductions of Airfoil Broadband Noise through Sinusoidal Trailing-Edge Serrations

    Source: Journal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 002::page 04022003
    Author:
    Sushil Kumar Singh
    ,
    Mohit Garg
    ,
    S. Narayanan
    ,
    Lorna Ayton
    ,
    Paruchuri Chaitanya
    DOI: 10.1061/(ASCE)AS.1943-5525.0001386
    Publisher: ASCE
    Abstract: The present study investigates the efficacy of sinusoidal trailing-edge (TE) serrations as a passive means for the reductions of airfoil broadband noise, theoretically and experimentally. Comprehensive parametric studies were conducted to determine the effect of serration amplitudes and wavelengths on the noise reduction performance of a National Advisory Committee for Aeronautics (NACA) airfoil. Initially, the present paper shows the use of the trailing-edge noise (TNO) model for the accurate predictions of the surface pressure spectrum near the TE and hence the far-field noise using the Wiener-Hopf method. The predicted spectra and the noise reduction levels showed good agreement with the measurements for a wide range of frequencies. The present study reveals that the local maximums of the overall noise reductions occur when the transverse turbulence integral length scale is either 1.2 or 0.2 times the serration wavelength, which corresponds to λ/Λt=0.833 or 5, where λ and Λt are the serration wavelength and integral length scale. One of the key findings of the paper is that the serration wavelength at which the highest noise reductions occur when the acoustic emissions vary inversely with the modified Strouhal number Sthm [i.e., wsste(ω)/wbl(ω)∝1/Sthm] for narrow (i.e., small wavelengths) and wider serrations (i.e., large wavelengths), where wsste and wbl are the acoustic emissions radiated from the serrated and baseline airfoils. Further, the TE serrations are also observed to reduce leading-edge (LE) noise along with the self-noise, which indicates the efficacy of TE serrations in reducing the total far-field noise.
    • Download: (5.041Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Reductions of Airfoil Broadband Noise through Sinusoidal Trailing-Edge Serrations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283391
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorSushil Kumar Singh
    contributor authorMohit Garg
    contributor authorS. Narayanan
    contributor authorLorna Ayton
    contributor authorParuchuri Chaitanya
    date accessioned2022-05-07T21:09:35Z
    date available2022-05-07T21:09:35Z
    date issued2022-01-10
    identifier other(ASCE)AS.1943-5525.0001386.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283391
    description abstractThe present study investigates the efficacy of sinusoidal trailing-edge (TE) serrations as a passive means for the reductions of airfoil broadband noise, theoretically and experimentally. Comprehensive parametric studies were conducted to determine the effect of serration amplitudes and wavelengths on the noise reduction performance of a National Advisory Committee for Aeronautics (NACA) airfoil. Initially, the present paper shows the use of the trailing-edge noise (TNO) model for the accurate predictions of the surface pressure spectrum near the TE and hence the far-field noise using the Wiener-Hopf method. The predicted spectra and the noise reduction levels showed good agreement with the measurements for a wide range of frequencies. The present study reveals that the local maximums of the overall noise reductions occur when the transverse turbulence integral length scale is either 1.2 or 0.2 times the serration wavelength, which corresponds to λ/Λt=0.833 or 5, where λ and Λt are the serration wavelength and integral length scale. One of the key findings of the paper is that the serration wavelength at which the highest noise reductions occur when the acoustic emissions vary inversely with the modified Strouhal number Sthm [i.e., wsste(ω)/wbl(ω)∝1/Sthm] for narrow (i.e., small wavelengths) and wider serrations (i.e., large wavelengths), where wsste and wbl are the acoustic emissions radiated from the serrated and baseline airfoils. Further, the TE serrations are also observed to reduce leading-edge (LE) noise along with the self-noise, which indicates the efficacy of TE serrations in reducing the total far-field noise.
    publisherASCE
    titleOn the Reductions of Airfoil Broadband Noise through Sinusoidal Trailing-Edge Serrations
    typeJournal Paper
    journal volume35
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001386
    journal fristpage04022003
    journal lastpage04022003-21
    page21
    treeJournal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian