YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Damage Constitutive Model of Gas-Bearing Coal with Consideration to Crack Deformation

    Source: Journal of Energy Engineering:;2021:;Volume ( 148 ):;issue: 001::page 04021066
    Author:
    Heng Zhang
    ,
    Chengwu Li
    ,
    Min Hao
    ,
    Yilin Wang
    DOI: 10.1061/(ASCE)EY.1943-7897.0000819
    Publisher: ASCE
    Abstract: Coal is a complex porous medium. When gas exists in the coal body, the fissure structure of coal and the occurrence of gas adsorption make the stress state of gas-bearing coal different from that of ordinary coal. Therefore, the stress state of gas-bearing coal cannot be accurately described by the Terzaghi effective stress, which ignores the effects of crack deformation and methane. To improve the accuracy of gas-bearing coal analysis, this study considered the corrosive effect of free gas and adsorbed gas and the crack closure effect to establish a novel statistical damage constitutive model with consideration to the combined effects of free gas, adsorbed gas, and coal cracking. The established model was used to elucidate the effects of gas-bearing coal on the coal’s mechanical deformation and damage characteristics under different stress conditions. The model was validated through full stress–strain experiments on gas-bearing coal under different axial pressure and gas pressure. The results obtained by the proposed statistical damage constitutive model can better describe the stress state of the gas-bearing coal, particularly in the initial stage of void compaction, and are in good agreement with the experimental data. The proposed model provides the theoretical foundation for future studies on the characteristic mechanism of gas-bearing coal.
    • Download: (1.013Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Damage Constitutive Model of Gas-Bearing Coal with Consideration to Crack Deformation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283321
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorHeng Zhang
    contributor authorChengwu Li
    contributor authorMin Hao
    contributor authorYilin Wang
    date accessioned2022-05-07T21:05:54Z
    date available2022-05-07T21:05:54Z
    date issued2021-12-09
    identifier other(ASCE)EY.1943-7897.0000819.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283321
    description abstractCoal is a complex porous medium. When gas exists in the coal body, the fissure structure of coal and the occurrence of gas adsorption make the stress state of gas-bearing coal different from that of ordinary coal. Therefore, the stress state of gas-bearing coal cannot be accurately described by the Terzaghi effective stress, which ignores the effects of crack deformation and methane. To improve the accuracy of gas-bearing coal analysis, this study considered the corrosive effect of free gas and adsorbed gas and the crack closure effect to establish a novel statistical damage constitutive model with consideration to the combined effects of free gas, adsorbed gas, and coal cracking. The established model was used to elucidate the effects of gas-bearing coal on the coal’s mechanical deformation and damage characteristics under different stress conditions. The model was validated through full stress–strain experiments on gas-bearing coal under different axial pressure and gas pressure. The results obtained by the proposed statistical damage constitutive model can better describe the stress state of the gas-bearing coal, particularly in the initial stage of void compaction, and are in good agreement with the experimental data. The proposed model provides the theoretical foundation for future studies on the characteristic mechanism of gas-bearing coal.
    publisherASCE
    titleStatistical Damage Constitutive Model of Gas-Bearing Coal with Consideration to Crack Deformation
    typeJournal Paper
    journal volume148
    journal issue1
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000819
    journal fristpage04021066
    journal lastpage04021066-8
    page8
    treeJournal of Energy Engineering:;2021:;Volume ( 148 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian