YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ancillary Service by Tiered Energy Storage Systems

    Source: Journal of Energy Engineering:;2021:;Volume ( 148 ):;issue: 001::page 04021059
    Author:
    Jiansheng Huang
    ,
    Zhuhan Jiang
    ,
    Michael Negnevitsky
    DOI: 10.1061/(ASCE)EY.1943-7897.0000812
    Publisher: ASCE
    Abstract: Due to intermittent characteristics and lack of inertia and damping properties, high penetration of renewable energy sources in power grids could bring about a series of security issues related to power system stability and control. In many countries and regions, therefore, power regulators tend to request self-frequency control ancillary services (FCAS) of renewable power generation, which could introduce further obstacles to utilize clean and inexhaustible wind power, solar energy, and the like in large scale. This paper aims to address such a challenge by presenting a tiered energy storage system (TESS) for self-provision of frequency regulation services. The TESS is composed of different types of energy storage devices aimed at rapid response speed, sufficient storage capacity, and acceptable investment/operation costs. The proposed method can be applied for the FCAS of power grids with high-penetration renewable energy integration. Based on the real wind power generation and electricity demand, simulations were carried out to demonstrate the feasibility of the self-FCAS by the developed TESS.
    • Download: (2.190Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ancillary Service by Tiered Energy Storage Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283314
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorJiansheng Huang
    contributor authorZhuhan Jiang
    contributor authorMichael Negnevitsky
    date accessioned2022-05-07T21:05:35Z
    date available2022-05-07T21:05:35Z
    date issued2021-10-18
    identifier other(ASCE)EY.1943-7897.0000812.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283314
    description abstractDue to intermittent characteristics and lack of inertia and damping properties, high penetration of renewable energy sources in power grids could bring about a series of security issues related to power system stability and control. In many countries and regions, therefore, power regulators tend to request self-frequency control ancillary services (FCAS) of renewable power generation, which could introduce further obstacles to utilize clean and inexhaustible wind power, solar energy, and the like in large scale. This paper aims to address such a challenge by presenting a tiered energy storage system (TESS) for self-provision of frequency regulation services. The TESS is composed of different types of energy storage devices aimed at rapid response speed, sufficient storage capacity, and acceptable investment/operation costs. The proposed method can be applied for the FCAS of power grids with high-penetration renewable energy integration. Based on the real wind power generation and electricity demand, simulations were carried out to demonstrate the feasibility of the self-FCAS by the developed TESS.
    publisherASCE
    titleAncillary Service by Tiered Energy Storage Systems
    typeJournal Paper
    journal volume148
    journal issue1
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000812
    journal fristpage04021059
    journal lastpage04021059-8
    page8
    treeJournal of Energy Engineering:;2021:;Volume ( 148 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian