YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Micromechanics of Fiber–Concrete Interaction: Numerical Modeling and Experimental Validation

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 005::page 04022020
    Author:
    Chenyang Li
    ,
    Xinwei Zhou
    ,
    Gianluca Cusatis
    DOI: 10.1061/(ASCE)EM.1943-7889.0002097
    Publisher: ASCE
    Abstract: To simulate the behavior of fiber-reinforced concrete, an accurate modeling of the concrete and fiber phases as well as the fiber–concrete interaction is required. This study proposes a new model to account for fiber-matrix interactions based on micromechanics. The concrete matrix is simulated using the lattice discrete particle model (LDPM), a mesoscale model for heterogeneous materials. The fiber is explicitly represented using elastoplastic beam elements. The fiber–concrete interaction algorithm features a slideline model and a constitutive model to describe the bond-slip relation. The slideline model includes a tie algorithm for interactions between concrete and slideline, and a penalty constraint between the slideline and the fiber. The proposed model is examined by simulating different types of fiber pullout tests. These simulations examine the model validity in capturing the fiber–concrete interaction both in the direction orthogonal to the fiber and in the direction of pullout. Also, the proposed model is calibrated and validated by comparing numerical simulations with experimental data from the literature, including fiber pullout under confinement, pullout of hooked fiber, and pullout of inclined fiber that leads to matrix spalling. The good agreement between the simulation results and the experimental data in terms of force versus displacement curve demonstrates the effectiveness of the proposed approach in simulating fiber–concrete interaction. In addition, using the proposed model, the contributions from different toughening mechanisms can be quantitatively compared.
    • Download: (1.442Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Micromechanics of Fiber–Concrete Interaction: Numerical Modeling and Experimental Validation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283294
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorChenyang Li
    contributor authorXinwei Zhou
    contributor authorGianluca Cusatis
    date accessioned2022-05-07T21:04:47Z
    date available2022-05-07T21:04:47Z
    date issued2022-02-28
    identifier other(ASCE)EM.1943-7889.0002097.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283294
    description abstractTo simulate the behavior of fiber-reinforced concrete, an accurate modeling of the concrete and fiber phases as well as the fiber–concrete interaction is required. This study proposes a new model to account for fiber-matrix interactions based on micromechanics. The concrete matrix is simulated using the lattice discrete particle model (LDPM), a mesoscale model for heterogeneous materials. The fiber is explicitly represented using elastoplastic beam elements. The fiber–concrete interaction algorithm features a slideline model and a constitutive model to describe the bond-slip relation. The slideline model includes a tie algorithm for interactions between concrete and slideline, and a penalty constraint between the slideline and the fiber. The proposed model is examined by simulating different types of fiber pullout tests. These simulations examine the model validity in capturing the fiber–concrete interaction both in the direction orthogonal to the fiber and in the direction of pullout. Also, the proposed model is calibrated and validated by comparing numerical simulations with experimental data from the literature, including fiber pullout under confinement, pullout of hooked fiber, and pullout of inclined fiber that leads to matrix spalling. The good agreement between the simulation results and the experimental data in terms of force versus displacement curve demonstrates the effectiveness of the proposed approach in simulating fiber–concrete interaction. In addition, using the proposed model, the contributions from different toughening mechanisms can be quantitatively compared.
    publisherASCE
    titleMicromechanics of Fiber–Concrete Interaction: Numerical Modeling and Experimental Validation
    typeJournal Paper
    journal volume148
    journal issue5
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002097
    journal fristpage04022020
    journal lastpage04022020-13
    page13
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian