YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Joint Statistics of Natural Frequencies Corresponding to Structural Systems with Singular Random Parameter Matrices

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 003::page 04022001
    Author:
    Vasileios C. Fragkoulis
    ,
    Ioannis A. Kougioumtzoglou
    ,
    Athanasios A. Pantelous
    ,
    Michael Beer
    DOI: 10.1061/(ASCE)EM.1943-7889.0002081
    Publisher: ASCE
    Abstract: An asymptotic approximation methodology for solving standard random eigenvalue problems is generalized herein to account for structural systems with singular random parameter matrices. In this regard, resorting to the concept of the Moore–Penrose matrix inverse and generalizing expressions for the rate of change of the eigenvalues, novel closed-form expressions are derived for the joint moments of the system natural frequencies. Two indicative examples pertaining to multiple-degree-of-freedom structural systems are considered for demonstrating the reliability of the methodology. Comparisons with pertinent Monte Carlo simulation data are included as well.
    • Download: (491.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Joint Statistics of Natural Frequencies Corresponding to Structural Systems with Singular Random Parameter Matrices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283278
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorVasileios C. Fragkoulis
    contributor authorIoannis A. Kougioumtzoglou
    contributor authorAthanasios A. Pantelous
    contributor authorMichael Beer
    date accessioned2022-05-07T21:04:09Z
    date available2022-05-07T21:04:09Z
    date issued2022-01-03
    identifier other(ASCE)EM.1943-7889.0002081.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283278
    description abstractAn asymptotic approximation methodology for solving standard random eigenvalue problems is generalized herein to account for structural systems with singular random parameter matrices. In this regard, resorting to the concept of the Moore–Penrose matrix inverse and generalizing expressions for the rate of change of the eigenvalues, novel closed-form expressions are derived for the joint moments of the system natural frequencies. Two indicative examples pertaining to multiple-degree-of-freedom structural systems are considered for demonstrating the reliability of the methodology. Comparisons with pertinent Monte Carlo simulation data are included as well.
    publisherASCE
    titleJoint Statistics of Natural Frequencies Corresponding to Structural Systems with Singular Random Parameter Matrices
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002081
    journal fristpage04022001
    journal lastpage04022001-11
    page11
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian