YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Continuous Nonlinear Sliding Mode Control with Fractional Operators for Quadrotor UAV Systems in the Presence of Disturbances

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001::page 04021122
    Author:
    Moussa Labbadi
    ,
    Karima Boudaraia
    ,
    Ahmed Elakkary
    ,
    Mohamed Djemai
    ,
    Mohamed Cherkaoui
    DOI: 10.1061/(ASCE)AS.1943-5525.0001375
    Publisher: ASCE
    Abstract: This paper investigates the robust continuous fractional-order nonlinear sliding mode (RCFONSM) control scheme for controlling a disturbed uncertain quadrotor (DUQ). First, the fractional-order nonsingular terminal sliding mode (FONTSM) manifolds are designed for the altitude and attitude, and a finite-time convergence is realized in the sliding mode phases of the DUQ system. Then, based on fast terminal sliding, reaching laws are proposed to enhance the tracking performance against disturbances and ensure finite-time convergence in the reaching phases of the DUQ system. The proposed robust continuous fractional-order nonsingular terminal sliding mode (RCFONTSM) switch element may effectively improve the dynamical performance of the fractional-order nonlinear sliding mode (FONSM) surface by substituting the integral and derivative operators with fractional-order operators for the error dynamics. The Lyapunov theory is used to prove the stability of the tracking errors and the stabilization of the DUQ simultaneously. The proposed sliding manifolds and fast reaching laws ensured good robustness against disturbances/uncertainties, fast convergence, and high precision. Numerical simulation of the proposed controller compared with fractional-order (FO) backstepping sliding mode control (SMC) is given to demonstrate the superiority of the RCFONSM.
    • Download: (875.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Continuous Nonlinear Sliding Mode Control with Fractional Operators for Quadrotor UAV Systems in the Presence of Disturbances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283269
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorMoussa Labbadi
    contributor authorKarima Boudaraia
    contributor authorAhmed Elakkary
    contributor authorMohamed Djemai
    contributor authorMohamed Cherkaoui
    date accessioned2022-05-07T21:03:53Z
    date available2022-05-07T21:03:53Z
    date issued2021-10-28
    identifier other(ASCE)AS.1943-5525.0001375.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283269
    description abstractThis paper investigates the robust continuous fractional-order nonlinear sliding mode (RCFONSM) control scheme for controlling a disturbed uncertain quadrotor (DUQ). First, the fractional-order nonsingular terminal sliding mode (FONTSM) manifolds are designed for the altitude and attitude, and a finite-time convergence is realized in the sliding mode phases of the DUQ system. Then, based on fast terminal sliding, reaching laws are proposed to enhance the tracking performance against disturbances and ensure finite-time convergence in the reaching phases of the DUQ system. The proposed robust continuous fractional-order nonsingular terminal sliding mode (RCFONTSM) switch element may effectively improve the dynamical performance of the fractional-order nonlinear sliding mode (FONSM) surface by substituting the integral and derivative operators with fractional-order operators for the error dynamics. The Lyapunov theory is used to prove the stability of the tracking errors and the stabilization of the DUQ simultaneously. The proposed sliding manifolds and fast reaching laws ensured good robustness against disturbances/uncertainties, fast convergence, and high precision. Numerical simulation of the proposed controller compared with fractional-order (FO) backstepping sliding mode control (SMC) is given to demonstrate the superiority of the RCFONSM.
    publisherASCE
    titleA Continuous Nonlinear Sliding Mode Control with Fractional Operators for Quadrotor UAV Systems in the Presence of Disturbances
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001375
    journal fristpage04021122
    journal lastpage04021122-9
    page9
    treeJournal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian