YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Near-Real-Time Identification of Seismic Damage Using Unsupervised Deep Neural Network

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 003::page 04022006
    Author:
    Minkyu Kim
    ,
    Junho Song
    DOI: 10.1061/(ASCE)EM.1943-7889.0002066
    Publisher: ASCE
    Abstract: Prompt identification of structural damage is essential for effective postdisaster responses. To this end, this paper proposes a deep neural network (DNN)–based framework to identify seismic damage based on structural response data recorded during an earthquake event. The DNN in the proposed framework is constructed by Variational Autoencoder, which is one of the self-supervised DNNs that can construct the continuous latent space of the input data by learning probabilistic characteristics. The DNN is trained using the flexibility matrices obtained by operational modal analysis (OMA) of simulated structural responses of the target structure under the undamaged state. To consider the load-dependency of OMA results, the undamaged state of the structure is represented by the flexibility matrix, which is closest to that obtained from the measured seismic response in the latent space. The seismic damage of each member is then estimated based on the difference between the two matrices using the flexibility disassembly method. As a numerical example, the proposed method is applied to a 5-story, 5-bay steel frame structure for which structural analyses are first performed under artificial ground motions to create train and test datasets. The proposed framework is verified with the near-real-time simulation using ground motions of El Centro and Kobe earthquakes. The example demonstrates that the proposed DNN-based method can identify seismic damage accurately in near-real-time.
    • Download: (4.475Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Near-Real-Time Identification of Seismic Damage Using Unsupervised Deep Neural Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283262
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorMinkyu Kim
    contributor authorJunho Song
    date accessioned2022-05-07T21:03:33Z
    date available2022-05-07T21:03:33Z
    date issued2022-01-10
    identifier other(ASCE)EM.1943-7889.0002066.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283262
    description abstractPrompt identification of structural damage is essential for effective postdisaster responses. To this end, this paper proposes a deep neural network (DNN)–based framework to identify seismic damage based on structural response data recorded during an earthquake event. The DNN in the proposed framework is constructed by Variational Autoencoder, which is one of the self-supervised DNNs that can construct the continuous latent space of the input data by learning probabilistic characteristics. The DNN is trained using the flexibility matrices obtained by operational modal analysis (OMA) of simulated structural responses of the target structure under the undamaged state. To consider the load-dependency of OMA results, the undamaged state of the structure is represented by the flexibility matrix, which is closest to that obtained from the measured seismic response in the latent space. The seismic damage of each member is then estimated based on the difference between the two matrices using the flexibility disassembly method. As a numerical example, the proposed method is applied to a 5-story, 5-bay steel frame structure for which structural analyses are first performed under artificial ground motions to create train and test datasets. The proposed framework is verified with the near-real-time simulation using ground motions of El Centro and Kobe earthquakes. The example demonstrates that the proposed DNN-based method can identify seismic damage accurately in near-real-time.
    publisherASCE
    titleNear-Real-Time Identification of Seismic Damage Using Unsupervised Deep Neural Network
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002066
    journal fristpage04022006
    journal lastpage04022006-15
    page15
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian