YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Static Analysis on Some Typical Tensegrities with Additional Cables

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 003::page 04021162
    Author:
    Hui Wang
    ,
    Zheng Huang
    ,
    Jiabiao Yi
    ,
    Wen Jiang
    ,
    Zeng He
    DOI: 10.1061/(ASCE)EM.1943-7889.0002060
    Publisher: ASCE
    Abstract: Adding redundant cables to tensegrity structures is an inevitable requirement for the engineering application of this type of structure. Here we investigated the form-finding and stability of several typical classes of tensegrities with additional cables. An energy minimization–based form-finding method was presented and validated by the analytical solutions developed for prismatic and antiprismatic tensegrities. Some new multistable configurations of typical tensegrities were identified by the proposed algorithm, which demonstrates the robustness of the present form-finding method. It can be revealed from the present analysis that the stability and mechanical properties of the tensegrities with additional cables depended both on the number and the method of adding cables. The stiffness of the antiprismatic tensegrity increased with the increase of the number of additional cables and the reduction of the natural length of the additional cable. But for a more general case, the resistance to deformation of the tensegrity could not always be increased by increasing the number of additional cables. Additional cables could improve the possibility of obtaining more equilibrium states of the tensegrity, but the stability of those equilibrium states was not guaranteed. The transition between two stable self-equilibrated states of a tensegrity could be achieved by just reducing the length of additional cables.
    • Download: (3.095Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Static Analysis on Some Typical Tensegrities with Additional Cables

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283255
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorHui Wang
    contributor authorZheng Huang
    contributor authorJiabiao Yi
    contributor authorWen Jiang
    contributor authorZeng He
    date accessioned2022-05-07T21:03:22Z
    date available2022-05-07T21:03:22Z
    date issued2021-12-23
    identifier other(ASCE)EM.1943-7889.0002060.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283255
    description abstractAdding redundant cables to tensegrity structures is an inevitable requirement for the engineering application of this type of structure. Here we investigated the form-finding and stability of several typical classes of tensegrities with additional cables. An energy minimization–based form-finding method was presented and validated by the analytical solutions developed for prismatic and antiprismatic tensegrities. Some new multistable configurations of typical tensegrities were identified by the proposed algorithm, which demonstrates the robustness of the present form-finding method. It can be revealed from the present analysis that the stability and mechanical properties of the tensegrities with additional cables depended both on the number and the method of adding cables. The stiffness of the antiprismatic tensegrity increased with the increase of the number of additional cables and the reduction of the natural length of the additional cable. But for a more general case, the resistance to deformation of the tensegrity could not always be increased by increasing the number of additional cables. Additional cables could improve the possibility of obtaining more equilibrium states of the tensegrity, but the stability of those equilibrium states was not guaranteed. The transition between two stable self-equilibrated states of a tensegrity could be achieved by just reducing the length of additional cables.
    publisherASCE
    titleStatic Analysis on Some Typical Tensegrities with Additional Cables
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002060
    journal fristpage04021162
    journal lastpage04021162-11
    page11
    treeJournal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian