YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Free and Forced Vibrations of an Undamped Double-Beam System Carrying a Tip Mass with Rotary Inertia

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 002::page 04021141
    Author:
    Xiaojun Fang
    ,
    Hong Hao
    ,
    Kaiming Bi
    DOI: 10.1061/(ASCE)EM.1943-7889.0002056
    Publisher: ASCE
    Abstract: Many civil and mechanical engineering structures can be simplified as double-beam systems, i.e., a primary beam and a secondary beam connected to the primary beam. Many studies have investigated the vibration characteristics of double-beam systems. Those studies investigated the influences of boundary and connecting conditions of two beams on vibration frequency, mode shape, and dynamic responses of the system. None of the previous studies considered a tip mass on the double-beam system. Because some structures that support weight on their tip, such as a wind farm tower with a core that supports a nacelle at the top can for analysis be simplified as a double-beam system, it is therefore necessary to investigate the vibration characteristics of double-beam systems with a tip mass. In the present study, free and forced vibrations of an undamped double-beam system carrying a mass with rotary inertia at the tip of the primary beam are analytically investigated, based on the Euler-Bernoulli beam theory. Comprehensive parametric studies are carried out to investigate the influences of the key parameters of the double-beam system, including tip mass, rotary inertia, elastic layer stiffness connecting the two beams, and mass and rigidity ratio of the secondary beam to primary beam, on the vibration frequencies and dynamic responses of the system. Analytical results show that different parameters have different sensitivities on the system’s vibration characteristics, and the tuned mass damper (TMD) theory can be used to explain the structural responses.
    • Download: (857.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Free and Forced Vibrations of an Undamped Double-Beam System Carrying a Tip Mass with Rotary Inertia

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283251
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorXiaojun Fang
    contributor authorHong Hao
    contributor authorKaiming Bi
    date accessioned2022-05-07T21:03:11Z
    date available2022-05-07T21:03:11Z
    date issued2021-11-23
    identifier other(ASCE)EM.1943-7889.0002056.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283251
    description abstractMany civil and mechanical engineering structures can be simplified as double-beam systems, i.e., a primary beam and a secondary beam connected to the primary beam. Many studies have investigated the vibration characteristics of double-beam systems. Those studies investigated the influences of boundary and connecting conditions of two beams on vibration frequency, mode shape, and dynamic responses of the system. None of the previous studies considered a tip mass on the double-beam system. Because some structures that support weight on their tip, such as a wind farm tower with a core that supports a nacelle at the top can for analysis be simplified as a double-beam system, it is therefore necessary to investigate the vibration characteristics of double-beam systems with a tip mass. In the present study, free and forced vibrations of an undamped double-beam system carrying a mass with rotary inertia at the tip of the primary beam are analytically investigated, based on the Euler-Bernoulli beam theory. Comprehensive parametric studies are carried out to investigate the influences of the key parameters of the double-beam system, including tip mass, rotary inertia, elastic layer stiffness connecting the two beams, and mass and rigidity ratio of the secondary beam to primary beam, on the vibration frequencies and dynamic responses of the system. Analytical results show that different parameters have different sensitivities on the system’s vibration characteristics, and the tuned mass damper (TMD) theory can be used to explain the structural responses.
    publisherASCE
    titleFree and Forced Vibrations of an Undamped Double-Beam System Carrying a Tip Mass with Rotary Inertia
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002056
    journal fristpage04021141
    journal lastpage04021141-13
    page13
    treeJournal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian