YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Double Scalar Variables Plastic-Damage Model for Concrete

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 002::page 04021143
    Author:
    Dechun Lu
    ,
    Fanping Meng
    ,
    Xin Zhou
    ,
    Guosheng Wang
    ,
    Xiuli Du
    DOI: 10.1061/(ASCE)EM.1943-7889.0002050
    Publisher: ASCE
    Abstract: A framework of the plastic-damage model with double scalar variables is established in nominal stress space under the small deformation assumption. In the damaged part, a damage tensor composed of double scalar variables is presented to comprehensively characterize the isotropic damage behavior in three-dimensional (3D) conditions. The damage laws of Young’s modulus and shear modulus are proposed to capture their different damage characteristic observed in the test. For one-dimensional (1D) and 3D conditions, the applicability of single scalar and double scalar damage variables is discussed. The macroscopic damage difference between these two damage variables when describing damage under 3D conditions is analyzed. In the plastic part, the plastic strain increment is determined by two parts of magnitude and direction. The magnitude is obtained by the consistency condition, and the flow direction is defined by the nonorthogonal flow rule that can satisfactorily reproduce the dilatancy behavior of concrete. The proposed model is implemented by the explicit Runge–Kutta (RK) method with the fifth-order accuracy and the Pegasus method. The performance of the model is assessed by the comparison results between the model and the cyclic loading and unloading test data under different stress paths.
    • Download: (4.110Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Double Scalar Variables Plastic-Damage Model for Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283244
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorDechun Lu
    contributor authorFanping Meng
    contributor authorXin Zhou
    contributor authorGuosheng Wang
    contributor authorXiuli Du
    date accessioned2022-05-07T21:02:54Z
    date available2022-05-07T21:02:54Z
    date issued2021-11-24
    identifier other(ASCE)EM.1943-7889.0002050.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283244
    description abstractA framework of the plastic-damage model with double scalar variables is established in nominal stress space under the small deformation assumption. In the damaged part, a damage tensor composed of double scalar variables is presented to comprehensively characterize the isotropic damage behavior in three-dimensional (3D) conditions. The damage laws of Young’s modulus and shear modulus are proposed to capture their different damage characteristic observed in the test. For one-dimensional (1D) and 3D conditions, the applicability of single scalar and double scalar damage variables is discussed. The macroscopic damage difference between these two damage variables when describing damage under 3D conditions is analyzed. In the plastic part, the plastic strain increment is determined by two parts of magnitude and direction. The magnitude is obtained by the consistency condition, and the flow direction is defined by the nonorthogonal flow rule that can satisfactorily reproduce the dilatancy behavior of concrete. The proposed model is implemented by the explicit Runge–Kutta (RK) method with the fifth-order accuracy and the Pegasus method. The performance of the model is assessed by the comparison results between the model and the cyclic loading and unloading test data under different stress paths.
    publisherASCE
    titleDouble Scalar Variables Plastic-Damage Model for Concrete
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002050
    journal fristpage04021143
    journal lastpage04021143-19
    page19
    treeJournal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian