YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of Dual Viscoelastic Wave Barrier System with Unequal Draft

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 001::page 04021129
    Author:
    Cheng Bi
    ,
    Mao See Wu
    ,
    Adrian Wing-Keung Law
    DOI: 10.1061/(ASCE)EM.1943-7889.0002049
    Publisher: ASCE
    Abstract: This work investigated the interaction of surface waves with a dual-barrier system comprising two vertical viscoelastic thin sheets with variable spacing in finite water depth without preassumption of its dynamic behavior. The two sheets were assumed to be made of the same material and under different tensions, and both penetrated into the water depth partially with unequal drafts. The viscoelastic behavior of the sheet material, which accounts for its elastic deformation and internal energy dissipation, is represented by the Voigt model. Using the eigenfunction expansion and least square determination, analytical solutions were obtained for the dual-barrier system, including the asymptotic case of a single sheet when the second sheet draft approaches zero. Subsequently, the effects of hydroelastic regimes and viscoelasticity were examined. With the single-sheet system, the wave transmission decreases as the tensioned sheet shifts from platelike to membranelike, and its material has higher internal energy dissipation (i.e., viscosity). When the size of the bottom opening increases to a gap ratio larger than ∼0.6, however, the wave transmission becomes dominated by the diffraction through the gap, and the influence of sheet material characteristics is no longer significant. With the double-sheet system, the results show that the performance of the wave barrier improves significantly by the presence of the second sheet, even with a small draft. Complex resonating patterns can be observed with increase in sheet spacing for the dual-barrier system, which reduces the wave transmission. The presence of viscosity of the double-sheet system dampens the resonance, but also reduces the wave transmission by itself through the viscous dissipation of the incident wave energy.
    • Download: (2.931Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of Dual Viscoelastic Wave Barrier System with Unequal Draft

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283243
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorCheng Bi
    contributor authorMao See Wu
    contributor authorAdrian Wing-Keung Law
    date accessioned2022-05-07T21:02:51Z
    date available2022-05-07T21:02:51Z
    date issued2021-11-01
    identifier other(ASCE)EM.1943-7889.0002049.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283243
    description abstractThis work investigated the interaction of surface waves with a dual-barrier system comprising two vertical viscoelastic thin sheets with variable spacing in finite water depth without preassumption of its dynamic behavior. The two sheets were assumed to be made of the same material and under different tensions, and both penetrated into the water depth partially with unequal drafts. The viscoelastic behavior of the sheet material, which accounts for its elastic deformation and internal energy dissipation, is represented by the Voigt model. Using the eigenfunction expansion and least square determination, analytical solutions were obtained for the dual-barrier system, including the asymptotic case of a single sheet when the second sheet draft approaches zero. Subsequently, the effects of hydroelastic regimes and viscoelasticity were examined. With the single-sheet system, the wave transmission decreases as the tensioned sheet shifts from platelike to membranelike, and its material has higher internal energy dissipation (i.e., viscosity). When the size of the bottom opening increases to a gap ratio larger than ∼0.6, however, the wave transmission becomes dominated by the diffraction through the gap, and the influence of sheet material characteristics is no longer significant. With the double-sheet system, the results show that the performance of the wave barrier improves significantly by the presence of the second sheet, even with a small draft. Complex resonating patterns can be observed with increase in sheet spacing for the dual-barrier system, which reduces the wave transmission. The presence of viscosity of the double-sheet system dampens the resonance, but also reduces the wave transmission by itself through the viscous dissipation of the incident wave energy.
    publisherASCE
    titlePerformance of Dual Viscoelastic Wave Barrier System with Unequal Draft
    typeJournal Paper
    journal volume148
    journal issue1
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002049
    journal fristpage04021129
    journal lastpage04021129-12
    page12
    treeJournal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian