YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Method of Scramjet Nozzles within Predetermined Geometrical Space and Experimental Verification

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001::page 04021119
    Author:
    Yile Chen
    ,
    Kaikai Yu
    ,
    Guangtao Song
    ,
    Jianhui Ge
    ,
    Jinglei Xu
    DOI: 10.1061/(ASCE)AS.1943-5525.0001372
    Publisher: ASCE
    Abstract: A new design method of scramjet nozzles within predetermined geometrical space is proposed to optimize the nozzle aerodynamic performance. The main characteristic of the proposed method is that the design factors and flow angle are employed to control the nozzle configuration and customize the performance. Firstly, the proposed method and the method of characteristics are introduced. Secondly, the grid resolution is studied, and the proposed method is validated using the computational fluid dynamics (CFD) approach. Then, impact studies are carried out on the design factors and the flow angle in the nozzle design process. The results show that the asymmetry factor has little effect on thrust coefficient, and the lift and pitching moment firstly increase and then decrease with the increase of the asymmetry factor. The thrust coefficient increases firstly and then decreases with the increase of the flow angle, whereas both the lift and the pitching moment present approximately linear increasing trends. After that, the superiority of the proposed method is demonstrated by comparing with the traditional method. The proposed method can improve the thrust coefficient, lift, and pitching moment by 33.94%, 326.42%, and 32.24% at identical design conditions. Finally, a cold flow experiment and the three-dimensional CFD are conducted out to evaluate the effectiveness and accuracy of the proposed method. The experimental results show good agreement with that of numerical simulation. In conclusion, the proposed method not only fully utilizes the geometrical space to increase the aerodynamic performance but also provide further customizability and flexibility in the nozzle design.
    • Download: (4.389Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Method of Scramjet Nozzles within Predetermined Geometrical Space and Experimental Verification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283236
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorYile Chen
    contributor authorKaikai Yu
    contributor authorGuangtao Song
    contributor authorJianhui Ge
    contributor authorJinglei Xu
    date accessioned2022-05-07T21:02:38Z
    date available2022-05-07T21:02:38Z
    date issued2021-10-08
    identifier other(ASCE)AS.1943-5525.0001372.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283236
    description abstractA new design method of scramjet nozzles within predetermined geometrical space is proposed to optimize the nozzle aerodynamic performance. The main characteristic of the proposed method is that the design factors and flow angle are employed to control the nozzle configuration and customize the performance. Firstly, the proposed method and the method of characteristics are introduced. Secondly, the grid resolution is studied, and the proposed method is validated using the computational fluid dynamics (CFD) approach. Then, impact studies are carried out on the design factors and the flow angle in the nozzle design process. The results show that the asymmetry factor has little effect on thrust coefficient, and the lift and pitching moment firstly increase and then decrease with the increase of the asymmetry factor. The thrust coefficient increases firstly and then decreases with the increase of the flow angle, whereas both the lift and the pitching moment present approximately linear increasing trends. After that, the superiority of the proposed method is demonstrated by comparing with the traditional method. The proposed method can improve the thrust coefficient, lift, and pitching moment by 33.94%, 326.42%, and 32.24% at identical design conditions. Finally, a cold flow experiment and the three-dimensional CFD are conducted out to evaluate the effectiveness and accuracy of the proposed method. The experimental results show good agreement with that of numerical simulation. In conclusion, the proposed method not only fully utilizes the geometrical space to increase the aerodynamic performance but also provide further customizability and flexibility in the nozzle design.
    publisherASCE
    titleDesign Method of Scramjet Nozzles within Predetermined Geometrical Space and Experimental Verification
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001372
    journal fristpage04021119
    journal lastpage04021119-14
    page14
    treeJournal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian