YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Graphene–Biochar Composite for Effective Congo Red Dye Removal from Water

    Source: Journal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 007::page 04022030
    Author:
    Yu-Ying Wang
    ,
    Hao-Hao Lyu
    ,
    Yu-Di Hu
    ,
    Yu-Xue Liu
    ,
    Li-Li He
    ,
    Fan-Chen Luo
    ,
    Sheng-Mao Yang
    DOI: 10.1061/(ASCE)EE.1943-7870.0002009
    Publisher: ASCE
    Abstract: Congo red (CR), a harmful pollutant, is increasingly contaminating aquatic environments. The removal of CR from wastewater is important. This study developed a novel graphene–biochar composite (GR-BC) to enhance CR treatment. The physicochemical properties of GR-BC were studied using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller techniques. The CR adsorption capacities of biochar (BC) and GR-BC were analyzed using batch adsorption experiments. The effect of the initial pH of the CR solution, CR concentration, and adsorption time of CR were determined. The SEM, XRD, and FT-IR results showed that graphene was loaded successfully onto the BC. The BET results showed that GR-BC had a larger surface area than BC. The adsorption experiments showed that the highest CR adsorption efficiency occurred at pH 2, and reached 99.6% and 99.5% for BC and GR-BC, respectively. The GR-BC treatment was better at removing CR dye than was BC. The highest Langmuir adsorptive capacity of GR-BC (414.9  mg·g−1) was double of that of BC (193.8  mg·g−1). The higher R2 values for the Freundlich isotherm than for the Langmuir isotherm indicate that the Freundlich isotherm model best fit the experimental data for both BC and GR-BC. The pseudo-second-order model (R2>0.99) successfully described the adsorption kinetics of CR dye by both BC and GR-BC. In addition, the influence of ionic strength and coexisting ions on CR adsorption by BC was greater than that on CR adsorption by GR-BC, indicating that GR-BC is more stable than BC. Recycling experiments showed that CR removal still 50% after the fifth cycle for GR-BC, which was higher than that for BC (35%), suggesting that GR-BC has better reusability than BC. Thus, the GR-BC composite is a potential adsorbent for CR dye removal.
    • Download: (3.247Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Graphene–Biochar Composite for Effective Congo Red Dye Removal from Water

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283200
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorYu-Ying Wang
    contributor authorHao-Hao Lyu
    contributor authorYu-Di Hu
    contributor authorYu-Xue Liu
    contributor authorLi-Li He
    contributor authorFan-Chen Luo
    contributor authorSheng-Mao Yang
    date accessioned2022-05-07T21:01:09Z
    date available2022-05-07T21:01:09Z
    date issued2022-04-18
    identifier other(ASCE)EE.1943-7870.0002009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283200
    description abstractCongo red (CR), a harmful pollutant, is increasingly contaminating aquatic environments. The removal of CR from wastewater is important. This study developed a novel graphene–biochar composite (GR-BC) to enhance CR treatment. The physicochemical properties of GR-BC were studied using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller techniques. The CR adsorption capacities of biochar (BC) and GR-BC were analyzed using batch adsorption experiments. The effect of the initial pH of the CR solution, CR concentration, and adsorption time of CR were determined. The SEM, XRD, and FT-IR results showed that graphene was loaded successfully onto the BC. The BET results showed that GR-BC had a larger surface area than BC. The adsorption experiments showed that the highest CR adsorption efficiency occurred at pH 2, and reached 99.6% and 99.5% for BC and GR-BC, respectively. The GR-BC treatment was better at removing CR dye than was BC. The highest Langmuir adsorptive capacity of GR-BC (414.9  mg·g−1) was double of that of BC (193.8  mg·g−1). The higher R2 values for the Freundlich isotherm than for the Langmuir isotherm indicate that the Freundlich isotherm model best fit the experimental data for both BC and GR-BC. The pseudo-second-order model (R2>0.99) successfully described the adsorption kinetics of CR dye by both BC and GR-BC. In addition, the influence of ionic strength and coexisting ions on CR adsorption by BC was greater than that on CR adsorption by GR-BC, indicating that GR-BC is more stable than BC. Recycling experiments showed that CR removal still 50% after the fifth cycle for GR-BC, which was higher than that for BC (35%), suggesting that GR-BC has better reusability than BC. Thus, the GR-BC composite is a potential adsorbent for CR dye removal.
    publisherASCE
    titleGraphene–Biochar Composite for Effective Congo Red Dye Removal from Water
    typeJournal Paper
    journal volume148
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0002009
    journal fristpage04022030
    journal lastpage04022030-11
    page11
    treeJournal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian