YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Removal of Metronidazole from Aqueous Solutions via Bioelectrochemical Systems

    Source: Journal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 006::page 04022025
    Author:
    Qi Sun
    ,
    Guangcan Zhu
    DOI: 10.1061/(ASCE)EE.1943-7870.0002006
    Publisher: ASCE
    Abstract: Metronidazole (MNZ) is a typical nitroimidazole antibiotic that often enters the environment via wastewater, and the demand for its degradation in wastewater is increasing in view of the potential environmental risks. Bioelectrochemical systems can effectively improve the degradation of refractory pollutants and are environmentally acceptable. In this study, the MNZ degradation performance of a bioelectrochemical system was investigated. The majority of MNZ in aqueous solutions could be degraded rapidly (within 180 min) at a current of 1 mA in the bioelectrochemical system, and its removal followed the pseudo–first-order kinetic model. The MNZ degradation rate constant in the bioelectrochemical system was nearly eight and two times higher than those in open circuit and nonbiological cathode systems, respectively. Increasing the electric current within a certain range could accelerate the degradation of MNZ, and increasing the initial MNZ concentration led to a slight reduction of the degradation efficiency. Furthermore, the activity of the electrode biofilm was examined, and the microbes were found to be in an active state. High-throughput sequencing analysis revealed that the microbial community structure varied greatly among the tested systems. Finally, the possible degradation mechanism of MNZ in bioelectrochemical systems with the stimulation of electric current was proposed. The synergetic biodegradation of the biofilm and electrochemistry may be responsible for MNZ degradation. These results indicate that bioelectrochemical systems have significant potential for the efficient treatment of wastewater contaminated with antibiotics, which would facilitate a more comprehensive understanding of the contaminant removal process.
    • Download: (3.102Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Removal of Metronidazole from Aqueous Solutions via Bioelectrochemical Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283198
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorQi Sun
    contributor authorGuangcan Zhu
    date accessioned2022-05-07T21:01:03Z
    date available2022-05-07T21:01:03Z
    date issued2022-03-28
    identifier other(ASCE)EE.1943-7870.0002006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283198
    description abstractMetronidazole (MNZ) is a typical nitroimidazole antibiotic that often enters the environment via wastewater, and the demand for its degradation in wastewater is increasing in view of the potential environmental risks. Bioelectrochemical systems can effectively improve the degradation of refractory pollutants and are environmentally acceptable. In this study, the MNZ degradation performance of a bioelectrochemical system was investigated. The majority of MNZ in aqueous solutions could be degraded rapidly (within 180 min) at a current of 1 mA in the bioelectrochemical system, and its removal followed the pseudo–first-order kinetic model. The MNZ degradation rate constant in the bioelectrochemical system was nearly eight and two times higher than those in open circuit and nonbiological cathode systems, respectively. Increasing the electric current within a certain range could accelerate the degradation of MNZ, and increasing the initial MNZ concentration led to a slight reduction of the degradation efficiency. Furthermore, the activity of the electrode biofilm was examined, and the microbes were found to be in an active state. High-throughput sequencing analysis revealed that the microbial community structure varied greatly among the tested systems. Finally, the possible degradation mechanism of MNZ in bioelectrochemical systems with the stimulation of electric current was proposed. The synergetic biodegradation of the biofilm and electrochemistry may be responsible for MNZ degradation. These results indicate that bioelectrochemical systems have significant potential for the efficient treatment of wastewater contaminated with antibiotics, which would facilitate a more comprehensive understanding of the contaminant removal process.
    publisherASCE
    titleEnhanced Removal of Metronidazole from Aqueous Solutions via Bioelectrochemical Systems
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0002006
    journal fristpage04022025
    journal lastpage04022025-11
    page11
    treeJournal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian