YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laccase-Driven 17β-Estradiol Humification in the Presence of Humic Acids at Varying pH Levels

    Source: Journal of Environmental Engineering:;2021:;Volume ( 148 ):;issue: 002::page 04021081
    Author:
    Shunyao Li
    ,
    Rui Zhu
    ,
    Huijie Wei
    ,
    Michael Gatheru Waigi
    ,
    Kai Sun
    ,
    Youbin Si
    DOI: 10.1061/(ASCE)EE.1943-7870.0001966
    Publisher: ASCE
    Abstract: Estrogens posing huge eco-environmental risks are universally found in water ecosystems. Laccase, as a multicopper oxidoreductase, can evoke humification and polymerization of estrogens to reduce their biotoxicity and removability, but little information exists in investigating the influence of humic acids (HAs) on E2 conversion kinetics, humification degree, and oligomer distribution at varying pH values. Herein, Trametes versicolor laccase (Tvlac) was able to efficiently convert 17β-estradiol (E2) in the presence of two different HAs, and the process fitted a pseudo-first-order kinetic model (R2=0.8474–0.9952). The kinetic constants were 0.048, 0.022, and 0.020  min−1 for HA-free, peat-derived HA, and commercial HA at pH 5.0, respectively. The changing pH not only affected E2 conversion kinetics, but altered the aromaticity and humification degrees of HAs. A total of five humified products including estrone (E1) and E2 self-oligomers (i.e., dimer, trimer, and tetramer), as well as E1-E2 copolymeric species, were tentatively identified, in which the dominant intermediates were E2 self-oligomers resulting from radical-based C─ C and/or C─ O bonds. Productions of E2 dimer, trimer, and tetramer with increased molecular sizes were the highest at pH 5.0 in the given pH conditions, and they were easily handled by centrifugation and filtration. In particular, E2 was capable of being covalently bound into HAs to form new humified supramolecular polymers, thus promoting E2 copolymerization and detoxification. Our results disclose that HAs exhibit a vitally important influence on the conversion kinetics and product distribution of E2 in Tvlac-started humification. Consequently, there is need to reunderstand the fate and geochemical behavior of estrogens with HAs present in the aquatic eco-environments at different pH conditions.
    • Download: (1.689Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laccase-Driven 17β-Estradiol Humification in the Presence of Humic Acids at Varying pH Levels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283161
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorShunyao Li
    contributor authorRui Zhu
    contributor authorHuijie Wei
    contributor authorMichael Gatheru Waigi
    contributor authorKai Sun
    contributor authorYoubin Si
    date accessioned2022-05-07T20:59:25Z
    date available2022-05-07T20:59:25Z
    date issued2021-11-27
    identifier other(ASCE)EE.1943-7870.0001966.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283161
    description abstractEstrogens posing huge eco-environmental risks are universally found in water ecosystems. Laccase, as a multicopper oxidoreductase, can evoke humification and polymerization of estrogens to reduce their biotoxicity and removability, but little information exists in investigating the influence of humic acids (HAs) on E2 conversion kinetics, humification degree, and oligomer distribution at varying pH values. Herein, Trametes versicolor laccase (Tvlac) was able to efficiently convert 17β-estradiol (E2) in the presence of two different HAs, and the process fitted a pseudo-first-order kinetic model (R2=0.8474–0.9952). The kinetic constants were 0.048, 0.022, and 0.020  min−1 for HA-free, peat-derived HA, and commercial HA at pH 5.0, respectively. The changing pH not only affected E2 conversion kinetics, but altered the aromaticity and humification degrees of HAs. A total of five humified products including estrone (E1) and E2 self-oligomers (i.e., dimer, trimer, and tetramer), as well as E1-E2 copolymeric species, were tentatively identified, in which the dominant intermediates were E2 self-oligomers resulting from radical-based C─ C and/or C─ O bonds. Productions of E2 dimer, trimer, and tetramer with increased molecular sizes were the highest at pH 5.0 in the given pH conditions, and they were easily handled by centrifugation and filtration. In particular, E2 was capable of being covalently bound into HAs to form new humified supramolecular polymers, thus promoting E2 copolymerization and detoxification. Our results disclose that HAs exhibit a vitally important influence on the conversion kinetics and product distribution of E2 in Tvlac-started humification. Consequently, there is need to reunderstand the fate and geochemical behavior of estrogens with HAs present in the aquatic eco-environments at different pH conditions.
    publisherASCE
    titleLaccase-Driven 17β-Estradiol Humification in the Presence of Humic Acids at Varying pH Levels
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001966
    journal fristpage04021081
    journal lastpage04021081-9
    page9
    treeJournal of Environmental Engineering:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian