YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Topological Approach to Partitioning Flow Networks for Parallel Simulation

    Source: Journal of Computing in Civil Engineering:;2022:;Volume ( 036 ):;issue: 004::page 04022010
    Author:
    Edward D. Tiernan
    ,
    Ben R. Hodges
    DOI: 10.1061/(ASCE)CP.1943-5487.0001020
    Publisher: ASCE
    Abstract: System partitioning for effective simulation of civil infrastructure flow networks on parallel processors is a nontrivial problem. Arbitrary partitioning focused only on balancing processor workload can lead to a large interprocessor communication burden that limits parallel speedup. Thus, there is a need for intelligent partitioning algorithms that balance the estimated computational load while minimizing the number of connections between partitions. Graph theory provides widely used partitioning methods, but these are applicable to networks with power-law connectivity and where the computational workload is proportional to the number of system nodes—conditions that do not hold for finite-volume solution of water drainage networks (e.g., river systems, stormwater drainage systems). This paper presents the novel BIPquick algorithm, which is shown to be an effective approach to identifying network partitions with reduced connectivity for systems that are directed acyclic graphs (DAGs) and have a physical limit on the number of connections per network node. Novel developments include (1) a node-cut approach that allows a partitioning workload function to be exactly balanced in systems where the computational work is proportional to the link length between nodes, (2) a finite-pass approach to partitioning that ensures a partitioning solution in a known time, and (3) a new connectivity scaling metric that allows simple evaluation and comparison of different partitioning results. The BIPquick model is tested on a large river network with up to 10,000 partitions.
    • Download: (2.511Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Topological Approach to Partitioning Flow Networks for Parallel Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283127
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorEdward D. Tiernan
    contributor authorBen R. Hodges
    date accessioned2022-05-07T20:57:51Z
    date available2022-05-07T20:57:51Z
    date issued2022-03-29
    identifier other(ASCE)CP.1943-5487.0001020.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283127
    description abstractSystem partitioning for effective simulation of civil infrastructure flow networks on parallel processors is a nontrivial problem. Arbitrary partitioning focused only on balancing processor workload can lead to a large interprocessor communication burden that limits parallel speedup. Thus, there is a need for intelligent partitioning algorithms that balance the estimated computational load while minimizing the number of connections between partitions. Graph theory provides widely used partitioning methods, but these are applicable to networks with power-law connectivity and where the computational workload is proportional to the number of system nodes—conditions that do not hold for finite-volume solution of water drainage networks (e.g., river systems, stormwater drainage systems). This paper presents the novel BIPquick algorithm, which is shown to be an effective approach to identifying network partitions with reduced connectivity for systems that are directed acyclic graphs (DAGs) and have a physical limit on the number of connections per network node. Novel developments include (1) a node-cut approach that allows a partitioning workload function to be exactly balanced in systems where the computational work is proportional to the link length between nodes, (2) a finite-pass approach to partitioning that ensures a partitioning solution in a known time, and (3) a new connectivity scaling metric that allows simple evaluation and comparison of different partitioning results. The BIPquick model is tested on a large river network with up to 10,000 partitions.
    publisherASCE
    titleA Topological Approach to Partitioning Flow Networks for Parallel Simulation
    typeJournal Paper
    journal volume36
    journal issue4
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0001020
    journal fristpage04022010
    journal lastpage04022010-13
    page13
    treeJournal of Computing in Civil Engineering:;2022:;Volume ( 036 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian