YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001::page 04021107
    Author:
    Vivek Ramteke
    ,
    Shashi Ranjan Kumar
    DOI: 10.1061/(ASCE)AS.1943-5525.0001360
    Publisher: ASCE
    Abstract: This paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.
    • Download: (2.769Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283113
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorVivek Ramteke
    contributor authorShashi Ranjan Kumar
    date accessioned2022-05-07T20:57:14Z
    date available2022-05-07T20:57:14Z
    date issued2021-09-21
    identifier other(ASCE)AS.1943-5525.0001360.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283113
    description abstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.
    publisherASCE
    titleHalo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001360
    journal fristpage04021107
    journal lastpage04021107-13
    page13
    treeJournal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian