YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Framework for Developing IFC-Based 3D Documentation from 2D Bridge Drawings

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 036 ):;issue: 001::page 04021031
    Author:
    Temitope Akanbi
    ,
    Jiansong Zhang
    DOI: 10.1061/(ASCE)CP.1943-5487.0000986
    Publisher: ASCE
    Abstract: Building information modeling (BIM) has been widely accepted in the industry and extensively used in supporting many construction tasks. In the government sector, the USDOT Federal Highway Administration (FHWA) has implemented building information modeling (BIM) for bridge construction. Hence, state DOTs are now faced with heightened pressure in complying with the FHWA’s Bridge Information Modeling (BrIM) standardization. Although BIM can provide many benefits to DOTs, current BIM-based platforms for bridges are not fully developed to process traditional two-dimensional (2D) bridge drawings for BIM-based computational tasks involving existing bridges, for example cost estimation. Bridges are a critical infrastructure in any nation’s economy, and by law the DOTs are tasked with ensuring that they remain safe for use. To maintain bridges, engineers currently perform periodic inspections, assessing each part of the bridge to identify areas that require maintenance. Maintenance work items are then generated for these areas; these are usually computed traditionally or by systems that still rely heavily on manual inputs. Such processes are time-consuming and cumbersome, and depend on years of bridge technical expertise. To overcome these limitations and improve the accuracy of processes such as generating maintenance work items for bridges, we propose a framework for automatically (1) processing existing 2D bridge drawings for bridges built pre-BIM adoption in the architecture, engineering, and construction (AEC) industry; (2) converting these record drawings into three-dimensional (3D) information models; and (3) converting 3D information models into industry foundation class (IFC) files. The developed 3D models using the proposed framework were compared against developed 3D models using the state-of-the-art method. Experimental results show that the developed framework can be used in developing algorithms that generate 3D models and IFC output files from portable document format (PDF) bridge drawings in a semiautomated fashion. The proposed method uses 3.33% of the time it takes the current state-of-the-art method to generate a 3D model, and the generated models are of comparative quality.
    • Download: (2.247Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Framework for Developing IFC-Based 3D Documentation from 2D Bridge Drawings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283105
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorTemitope Akanbi
    contributor authorJiansong Zhang
    date accessioned2022-05-07T20:56:56Z
    date available2022-05-07T20:56:56Z
    date issued2021-10-04
    identifier other(ASCE)CP.1943-5487.0000986.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283105
    description abstractBuilding information modeling (BIM) has been widely accepted in the industry and extensively used in supporting many construction tasks. In the government sector, the USDOT Federal Highway Administration (FHWA) has implemented building information modeling (BIM) for bridge construction. Hence, state DOTs are now faced with heightened pressure in complying with the FHWA’s Bridge Information Modeling (BrIM) standardization. Although BIM can provide many benefits to DOTs, current BIM-based platforms for bridges are not fully developed to process traditional two-dimensional (2D) bridge drawings for BIM-based computational tasks involving existing bridges, for example cost estimation. Bridges are a critical infrastructure in any nation’s economy, and by law the DOTs are tasked with ensuring that they remain safe for use. To maintain bridges, engineers currently perform periodic inspections, assessing each part of the bridge to identify areas that require maintenance. Maintenance work items are then generated for these areas; these are usually computed traditionally or by systems that still rely heavily on manual inputs. Such processes are time-consuming and cumbersome, and depend on years of bridge technical expertise. To overcome these limitations and improve the accuracy of processes such as generating maintenance work items for bridges, we propose a framework for automatically (1) processing existing 2D bridge drawings for bridges built pre-BIM adoption in the architecture, engineering, and construction (AEC) industry; (2) converting these record drawings into three-dimensional (3D) information models; and (3) converting 3D information models into industry foundation class (IFC) files. The developed 3D models using the proposed framework were compared against developed 3D models using the state-of-the-art method. Experimental results show that the developed framework can be used in developing algorithms that generate 3D models and IFC output files from portable document format (PDF) bridge drawings in a semiautomated fashion. The proposed method uses 3.33% of the time it takes the current state-of-the-art method to generate a 3D model, and the generated models are of comparative quality.
    publisherASCE
    titleFramework for Developing IFC-Based 3D Documentation from 2D Bridge Drawings
    typeJournal Paper
    journal volume36
    journal issue1
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000986
    journal fristpage04021031
    journal lastpage04021031-13
    page13
    treeJournal of Computing in Civil Engineering:;2021:;Volume ( 036 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian