YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Permeability Prediction of Porous Media by Feature Selection and Machine Learning Methods Comparison

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 036 ):;issue: 002::page 04021040
    Author:
    J. W. Tian
    ,
    Chongchong Qi
    ,
    Kang Peng
    ,
    Yingfeng Sun
    ,
    Zaher Mundher Yaseen
    DOI: 10.1061/(ASCE)CP.1943-5487.0000983
    Publisher: ASCE
    Abstract: Permeability of subsurface porous media is one of the primary factors that affect fluid transport in porous rock. However, accurate prediction of rock permeability is a challenging task due to its intricate pore network. Development of digital rocks provides an effective approach to reveal and characterize the pore network. In this paper, a combination of digital rock petrophysics and ensemble machine learning (ML) models is proposed to improve the permeability prediction of subsurface porous media. The permeability of the numerically generated porous samples as outputs was determined by the lattice Boltzmann method (LBM). The five most important parameters (porosity, tortuosity, fractal dimension, average pore diameter, and coordination number) were selected as inputs for the permeability prediction. To improve the accuracy, feature selection and ML methods comparisons were conducted. Three feature selection methods based on expert knowledge, correlation coefficient, and importance score were compared. Moreover, a comparison was performed on six ML methods (support vector machine, artificial neural network, decision tree, random forest, gradient-boosting machine, and Bayesian ridge regression) that were optimized by particle swarm optimization (PSO). The results indicated that (1) the feature selection based on the expert knowledge obtained a higher performance than the groups based on the correlation coefficient and importance score, implying the importance of expert knowledge on feature selection, and thus on ML performance; (2) artificial neural network with hyperparameter tuning achieved the best performance in predicting permeability; and (3) the optimized ML method outperformed the empirical equations in predicting permeability. In conclusion, this study provides a fast and reliable approach predicting permeability of subsurface porous media based on numerically generated porous images. Moreover, the proposed framework can be further extended to determine other petrophysical properties, for example, the relative permeability and thermal conductivity.
    • Download: (2.106Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Permeability Prediction of Porous Media by Feature Selection and Machine Learning Methods Comparison

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283104
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorJ. W. Tian
    contributor authorChongchong Qi
    contributor authorKang Peng
    contributor authorYingfeng Sun
    contributor authorZaher Mundher Yaseen
    date accessioned2022-05-07T20:56:52Z
    date available2022-05-07T20:56:52Z
    date issued2021-12-21
    identifier other(ASCE)CP.1943-5487.0000983.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283104
    description abstractPermeability of subsurface porous media is one of the primary factors that affect fluid transport in porous rock. However, accurate prediction of rock permeability is a challenging task due to its intricate pore network. Development of digital rocks provides an effective approach to reveal and characterize the pore network. In this paper, a combination of digital rock petrophysics and ensemble machine learning (ML) models is proposed to improve the permeability prediction of subsurface porous media. The permeability of the numerically generated porous samples as outputs was determined by the lattice Boltzmann method (LBM). The five most important parameters (porosity, tortuosity, fractal dimension, average pore diameter, and coordination number) were selected as inputs for the permeability prediction. To improve the accuracy, feature selection and ML methods comparisons were conducted. Three feature selection methods based on expert knowledge, correlation coefficient, and importance score were compared. Moreover, a comparison was performed on six ML methods (support vector machine, artificial neural network, decision tree, random forest, gradient-boosting machine, and Bayesian ridge regression) that were optimized by particle swarm optimization (PSO). The results indicated that (1) the feature selection based on the expert knowledge obtained a higher performance than the groups based on the correlation coefficient and importance score, implying the importance of expert knowledge on feature selection, and thus on ML performance; (2) artificial neural network with hyperparameter tuning achieved the best performance in predicting permeability; and (3) the optimized ML method outperformed the empirical equations in predicting permeability. In conclusion, this study provides a fast and reliable approach predicting permeability of subsurface porous media based on numerically generated porous images. Moreover, the proposed framework can be further extended to determine other petrophysical properties, for example, the relative permeability and thermal conductivity.
    publisherASCE
    titleImproved Permeability Prediction of Porous Media by Feature Selection and Machine Learning Methods Comparison
    typeJournal Paper
    journal volume36
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000983
    journal fristpage04021040
    journal lastpage04021040-12
    page12
    treeJournal of Computing in Civil Engineering:;2021:;Volume ( 036 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian