YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Construction Robot Teleoperation Safeguard Based on Real-Time Human Hand Motion Prediction

    Source: Journal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 007::page 04022040
    Author:
    Tianyu Zhou
    ,
    Qi Zhu
    ,
    Yangming Shi
    ,
    Jing Du
    DOI: 10.1061/(ASCE)CO.1943-7862.0002289
    Publisher: ASCE
    Abstract: Robotic teleoperation has shown great potentials in various construction applications. With the advancements of virtual telepresence and motion capture technologies, bilateral teleoperation has been tested in precision construction operations, where a human operator can drive the motion of a remote robot with their natural body motions. A significant challenge is that because of the mismatch between robot mechanic design and the human body, such as a different number of joints of a robotic arm and a human arm, the recovered robot motions driven by human hand motions may not be desired, leading to unintended consequences including collision. This study presents a proactive collision avoidance system based on the real-time prediction of human hand motions. The proposed method, Feature-based Human-Motion Prediction (FHMP), stores streaming motion data into a data pool, quantifies the spatiotemporal relationship between gaze focus and hand movement trajectories, and segments and clusters the streaming data into different pattern groups based the motion pattern similarity. Different machine learning (ML) models are trained for each of the pattern groups. During the real-time prediction, whenever a pattern change is detected, the ML model is transitioned to a new model that matches the new pattern. A data buffering approach is used to reuse the old data and old ML model for a certain period of time before the new ML model is well trained, to ensure an uninterrupted real-time prediction of human hand motions. The gaze and hand motion data of a human subject experiment (n=120) for pipe skid maintenance was used to test the system in a virtual reality (VR) environment. The result shows that FHMP can support anticipatory collision avoidance in bilateral teleoperation with a better prediction performance. Future research could enable testing the method on real robots for more believable results.
    • Download: (6.243Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Construction Robot Teleoperation Safeguard Based on Real-Time Human Hand Motion Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283093
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorTianyu Zhou
    contributor authorQi Zhu
    contributor authorYangming Shi
    contributor authorJing Du
    date accessioned2022-05-07T20:56:19Z
    date available2022-05-07T20:56:19Z
    date issued2022-04-19
    identifier other(ASCE)CO.1943-7862.0002289.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283093
    description abstractRobotic teleoperation has shown great potentials in various construction applications. With the advancements of virtual telepresence and motion capture technologies, bilateral teleoperation has been tested in precision construction operations, where a human operator can drive the motion of a remote robot with their natural body motions. A significant challenge is that because of the mismatch between robot mechanic design and the human body, such as a different number of joints of a robotic arm and a human arm, the recovered robot motions driven by human hand motions may not be desired, leading to unintended consequences including collision. This study presents a proactive collision avoidance system based on the real-time prediction of human hand motions. The proposed method, Feature-based Human-Motion Prediction (FHMP), stores streaming motion data into a data pool, quantifies the spatiotemporal relationship between gaze focus and hand movement trajectories, and segments and clusters the streaming data into different pattern groups based the motion pattern similarity. Different machine learning (ML) models are trained for each of the pattern groups. During the real-time prediction, whenever a pattern change is detected, the ML model is transitioned to a new model that matches the new pattern. A data buffering approach is used to reuse the old data and old ML model for a certain period of time before the new ML model is well trained, to ensure an uninterrupted real-time prediction of human hand motions. The gaze and hand motion data of a human subject experiment (n=120) for pipe skid maintenance was used to test the system in a virtual reality (VR) environment. The result shows that FHMP can support anticipatory collision avoidance in bilateral teleoperation with a better prediction performance. Future research could enable testing the method on real robots for more believable results.
    publisherASCE
    titleConstruction Robot Teleoperation Safeguard Based on Real-Time Human Hand Motion Prediction
    typeJournal Paper
    journal volume148
    journal issue7
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0002289
    journal fristpage04022040
    journal lastpage04022040-20
    page20
    treeJournal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian