YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Airfoil–Vortex Interaction Noise Control Mechanism Based on Active Flap Control

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001::page 04021111
    Author:
    Zhiyuan Hu
    ,
    Guohua Xu
    ,
    Yongjie Shi
    ,
    Runze Xia
    DOI: 10.1061/(ASCE)AS.1943-5525.0001356
    Publisher: ASCE
    Abstract: Blade-vortex interaction (BVI) noise is a significant source of rotor noise. In recent years, active flap control (AFC) has been used successfully to control BVI by adding a trailing edge flap to the blade. However, due to the rotor’s complex shape and motion in AFC, the accurate simulation of the motion and unsteady flow field is challenging. Therefore, studies of noise control by AFC have mostly focused on experimental methods. Few numerical simulations were conducted on the noise reduction mechanism. In order to understand the noise reduction mechanism of the AFC clearly, this paper establishes a computational fluid dynamics (CFD) method based on an overset grid and tries to simulate the AFC airfoil flow field with the artificial vortex interaction. The noise characteristics are obtained from an acoustic analogy method based on the Farassat 1A (F1A) equation. By parameter analysis study and by testing the airfoil load and vertical interference distance, the results show that the proposed active control method exactly reduces the airfoil-vortex interaction noise. A maximum noise reduction of 1.56 dB is observed, and the most critical control parameter is the deflection phase of the trailing edge. When the vortex core passes over the airfoil, the load fluctuation and the interaction noise can be reduced by an upward deflection of the trailing edge. The flapping of the trailing edge significantly changes the vortex core’s path, which can further control the downstream airfoil-vortex interaction and achieve noise reduction.
    • Download: (5.921Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Airfoil–Vortex Interaction Noise Control Mechanism Based on Active Flap Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283080
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorZhiyuan Hu
    contributor authorGuohua Xu
    contributor authorYongjie Shi
    contributor authorRunze Xia
    date accessioned2022-05-07T20:55:33Z
    date available2022-05-07T20:55:33Z
    date issued2021-09-23
    identifier other(ASCE)AS.1943-5525.0001356.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283080
    description abstractBlade-vortex interaction (BVI) noise is a significant source of rotor noise. In recent years, active flap control (AFC) has been used successfully to control BVI by adding a trailing edge flap to the blade. However, due to the rotor’s complex shape and motion in AFC, the accurate simulation of the motion and unsteady flow field is challenging. Therefore, studies of noise control by AFC have mostly focused on experimental methods. Few numerical simulations were conducted on the noise reduction mechanism. In order to understand the noise reduction mechanism of the AFC clearly, this paper establishes a computational fluid dynamics (CFD) method based on an overset grid and tries to simulate the AFC airfoil flow field with the artificial vortex interaction. The noise characteristics are obtained from an acoustic analogy method based on the Farassat 1A (F1A) equation. By parameter analysis study and by testing the airfoil load and vertical interference distance, the results show that the proposed active control method exactly reduces the airfoil-vortex interaction noise. A maximum noise reduction of 1.56 dB is observed, and the most critical control parameter is the deflection phase of the trailing edge. When the vortex core passes over the airfoil, the load fluctuation and the interaction noise can be reduced by an upward deflection of the trailing edge. The flapping of the trailing edge significantly changes the vortex core’s path, which can further control the downstream airfoil-vortex interaction and achieve noise reduction.
    publisherASCE
    titleAirfoil–Vortex Interaction Noise Control Mechanism Based on Active Flap Control
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001356
    journal fristpage04021111
    journal lastpage04021111-18
    page18
    treeJournal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian