YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Accounting for Variability: Identifying Critical Activities as a Supplement to the Critical Path

    Source: Journal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 005::page 04022019
    Author:
    Diana Salhab
    ,
    Dan Eggert Møller
    ,
    Søren Munch Lindhard
    ,
    Farook Hamzeh
    ,
    Morten Randrup
    ,
    Anders Pilgaard
    DOI: 10.1061/(ASCE)CO.1943-7862.0002266
    Publisher: ASCE
    Abstract: Successful realization of construction activities requires simultaneous integration of various resource input flows, giving rise to considerable sources of flow variability. Such variability might manifest as schedule variations, which can jeopardize the project performance, especially when using deterministic scheduling. Current scheduling techniques fail to efficiently tackle variability and rely on deterministic approaches. Therefore, this study fills the gap by developing a discrete event simulation model, where activity durations are modeled using beta distributions and program evaluation and review technique assumptions. By applying the Spearman correlation coefficient, activities with higher influence on the schedule were identified, highlighting where to reduce variability. An application example was conducted involving a critical path method (CPM) network containing 11 activities. Two types of waste emerging due to variability were identified as waiting time and variation gaps. Out of the 11 activities in the example network, two sets of critical activities were identified. Results revealed that an 80% reduction in variability in these critical activities led to a 51.9% increase in likelihood of completing the project on schedule, 30% decrease in waiting time, and 28.6% decrease in variation gap. An important implication of this research is that near-critical paths could become critical based on the amount of variability contained in the activities lying on each path. Acquiring such information early on during planning provides proactive, eye-opening insights into potential problematic scheduling areas. The study’s contributions include investigating the variability effect on two types of waste in production and providing project planners with a stochastic approach to manage the hidden waste in production systems; the approach examines the effect of reducing variability on the overall project performance characterized by meeting deadlines, avoiding trade idling (reducing waiting time), and exploring potential opportunities for enhancing performance (reducing variation gaps).
    • Download: (1.951Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Accounting for Variability: Identifying Critical Activities as a Supplement to the Critical Path

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283072
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorDiana Salhab
    contributor authorDan Eggert Møller
    contributor authorSøren Munch Lindhard
    contributor authorFarook Hamzeh
    contributor authorMorten Randrup
    contributor authorAnders Pilgaard
    date accessioned2022-05-07T20:54:54Z
    date available2022-05-07T20:54:54Z
    date issued2022-03-11
    identifier other(ASCE)CO.1943-7862.0002266.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283072
    description abstractSuccessful realization of construction activities requires simultaneous integration of various resource input flows, giving rise to considerable sources of flow variability. Such variability might manifest as schedule variations, which can jeopardize the project performance, especially when using deterministic scheduling. Current scheduling techniques fail to efficiently tackle variability and rely on deterministic approaches. Therefore, this study fills the gap by developing a discrete event simulation model, where activity durations are modeled using beta distributions and program evaluation and review technique assumptions. By applying the Spearman correlation coefficient, activities with higher influence on the schedule were identified, highlighting where to reduce variability. An application example was conducted involving a critical path method (CPM) network containing 11 activities. Two types of waste emerging due to variability were identified as waiting time and variation gaps. Out of the 11 activities in the example network, two sets of critical activities were identified. Results revealed that an 80% reduction in variability in these critical activities led to a 51.9% increase in likelihood of completing the project on schedule, 30% decrease in waiting time, and 28.6% decrease in variation gap. An important implication of this research is that near-critical paths could become critical based on the amount of variability contained in the activities lying on each path. Acquiring such information early on during planning provides proactive, eye-opening insights into potential problematic scheduling areas. The study’s contributions include investigating the variability effect on two types of waste in production and providing project planners with a stochastic approach to manage the hidden waste in production systems; the approach examines the effect of reducing variability on the overall project performance characterized by meeting deadlines, avoiding trade idling (reducing waiting time), and exploring potential opportunities for enhancing performance (reducing variation gaps).
    publisherASCE
    titleAccounting for Variability: Identifying Critical Activities as a Supplement to the Critical Path
    typeJournal Paper
    journal volume148
    journal issue5
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0002266
    journal fristpage04022019
    journal lastpage04022019-13
    page13
    treeJournal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian