YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Flexural Stiffness Model of FRP-Reinforced Concrete Slender Columns

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003::page 04022024
    Author:
    Ghassan Almasabha
    ,
    Ahmad Tarawneh
    ,
    Eman Saleh
    ,
    Omar Alajarmeh
    DOI: 10.1061/(ASCE)CC.1943-5614.0001218
    Publisher: ASCE
    Abstract: Predicting the nominal axial capacity of slender fiber-reinforced polymer (FRP) reinforced concrete (RC) columns is dependent majorly on their flexural stiffness. However, the current design provisions do not incorporate design equations to estimate the flexural stiffness of slender FRP-RC columns yet due to the limited research work on this aspect. Although limited research studies proposed flexural stiffness models for slender FRP-RC columns, these models show inaccurate results with large discrepancies. This study, therefore, compiles and analyzes a surveyed database of 53 tested slender FRP-RC columns found in the literature to construct a simplified and accurate model to predict the flexural stiffness of the slender FRP-RC columns. In this approach, the experimental-based flexural stiffness values of the tested specimens were used to build a nonlinear regression flexural stiffness model and examine the influence of the critical design parameters affecting this value. As a result, the proposed model showed a strong agreement with the experimental flexural stiffness values evidenced by having the least root mean square error (RMSE) compared to the other proposed models in the literature. Moreover, the proposed model was theoretically evaluated accounting for the second-moment order effect by which a data set of 36,000 cases were generated and compared to the results of the proposed model to increase its creditability and repeatability. Moreover, a design example was presented to quantify the difference in predicting the flexural stiffness of the slender FRP-RC columns between the proposed and available models. Accordingly, the proposed model revealed better representation of the flexural stiffness with higher accuracy compared to the available models which will help the engineers to accurately design the FRP-RC columns.
    • Download: (1.426Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Flexural Stiffness Model of FRP-Reinforced Concrete Slender Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282946
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorGhassan Almasabha
    contributor authorAhmad Tarawneh
    contributor authorEman Saleh
    contributor authorOmar Alajarmeh
    date accessioned2022-05-07T20:48:59Z
    date available2022-05-07T20:48:59Z
    date issued2022-6-1
    identifier other(ASCE)CC.1943-5614.0001218.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282946
    description abstractPredicting the nominal axial capacity of slender fiber-reinforced polymer (FRP) reinforced concrete (RC) columns is dependent majorly on their flexural stiffness. However, the current design provisions do not incorporate design equations to estimate the flexural stiffness of slender FRP-RC columns yet due to the limited research work on this aspect. Although limited research studies proposed flexural stiffness models for slender FRP-RC columns, these models show inaccurate results with large discrepancies. This study, therefore, compiles and analyzes a surveyed database of 53 tested slender FRP-RC columns found in the literature to construct a simplified and accurate model to predict the flexural stiffness of the slender FRP-RC columns. In this approach, the experimental-based flexural stiffness values of the tested specimens were used to build a nonlinear regression flexural stiffness model and examine the influence of the critical design parameters affecting this value. As a result, the proposed model showed a strong agreement with the experimental flexural stiffness values evidenced by having the least root mean square error (RMSE) compared to the other proposed models in the literature. Moreover, the proposed model was theoretically evaluated accounting for the second-moment order effect by which a data set of 36,000 cases were generated and compared to the results of the proposed model to increase its creditability and repeatability. Moreover, a design example was presented to quantify the difference in predicting the flexural stiffness of the slender FRP-RC columns between the proposed and available models. Accordingly, the proposed model revealed better representation of the flexural stiffness with higher accuracy compared to the available models which will help the engineers to accurately design the FRP-RC columns.
    publisherASCE
    titleData-Driven Flexural Stiffness Model of FRP-Reinforced Concrete Slender Columns
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001218
    journal fristpage04022024
    journal lastpage04022024-13
    page13
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian