YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Contribution of Longitudinal NSM-CFRP Bars on the Shear Strength of RC Beams with Varying Depths and Concrete Strengths

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003::page 04022025
    Author:
    Rami A. Hawileh
    ,
    Rayyan B. Saleh
    ,
    Elias I. Saqan
    ,
    Jamal A. Abdalla
    DOI: 10.1061/(ASCE)CC.1943-5614.0001212
    Publisher: ASCE
    Abstract: To assess experimentally the effect of flexural near surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) bars mounted on the sides of beams on the shear strength of reinforced concrete (RC) beams, 18 shear-deficient RC beams were built, strengthened with flexural NSM-CFRP bars, and tested under three-point bending until failure. The variables of the experimental program included the beam depth, the concrete compressive strength, and the flexural fiber-reinforced polymer (FRP) reinforcement ratio. It was observed that the strengthened beams exhibited up to 35% increase in shear capacity over the control beams. It was also observed that the increase in shear strength provided by concrete after strengthening was higher for beams with normal strength concrete when compared to those with higher strength concrete. The results have also revealed that the percent change in shear strength provided by concrete for the strengthened beams decreased with the increase in beam depth. Experimental data from this study showed that current standards become unconservative for beams with large depths. Five different beam shear strength models found in the literature were utilized to predict the shear strength of the tested beams. The models that exhibited the closest agreement with the experimental data were those of the University of Houston and the second order simplified modified compression field theory. It was concluded that flexural longitudinal NSM bars are a viable solution to enhance the shear strength of RC beams and that the shear strength provided by concrete can be accurately quantified using published models.
    • Download: (1.462Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Contribution of Longitudinal NSM-CFRP Bars on the Shear Strength of RC Beams with Varying Depths and Concrete Strengths

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282941
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorRami A. Hawileh
    contributor authorRayyan B. Saleh
    contributor authorElias I. Saqan
    contributor authorJamal A. Abdalla
    date accessioned2022-05-07T20:48:44Z
    date available2022-05-07T20:48:44Z
    date issued2022-6-1
    identifier other(ASCE)CC.1943-5614.0001212.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282941
    description abstractTo assess experimentally the effect of flexural near surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) bars mounted on the sides of beams on the shear strength of reinforced concrete (RC) beams, 18 shear-deficient RC beams were built, strengthened with flexural NSM-CFRP bars, and tested under three-point bending until failure. The variables of the experimental program included the beam depth, the concrete compressive strength, and the flexural fiber-reinforced polymer (FRP) reinforcement ratio. It was observed that the strengthened beams exhibited up to 35% increase in shear capacity over the control beams. It was also observed that the increase in shear strength provided by concrete after strengthening was higher for beams with normal strength concrete when compared to those with higher strength concrete. The results have also revealed that the percent change in shear strength provided by concrete for the strengthened beams decreased with the increase in beam depth. Experimental data from this study showed that current standards become unconservative for beams with large depths. Five different beam shear strength models found in the literature were utilized to predict the shear strength of the tested beams. The models that exhibited the closest agreement with the experimental data were those of the University of Houston and the second order simplified modified compression field theory. It was concluded that flexural longitudinal NSM bars are a viable solution to enhance the shear strength of RC beams and that the shear strength provided by concrete can be accurately quantified using published models.
    publisherASCE
    titleContribution of Longitudinal NSM-CFRP Bars on the Shear Strength of RC Beams with Varying Depths and Concrete Strengths
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001212
    journal fristpage04022025
    journal lastpage04022025-11
    page11
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian