YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    GFRP Composite Culverts for Hydraulic and Agricultural Underpasses: Structural Behavior, Design, and Application

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003::page 04022026
    Author:
    José A. Gonilha
    ,
    João R. Correia
    ,
    Miguel S. Santos
    ,
    João G. Ferreira
    ,
    Fernando A. Branco
    ,
    Rui C. Gomes
    DOI: 10.1061/(ASCE)CC.1943-5614.0001206
    Publisher: ASCE
    Abstract: Corrugated steel-sheet culvert systems were extensively applied in the construction of hydraulic and agricultural highways underpasses from the 1980s until the beginning of the 21st century. Less than 30 years after being built, the level of corrosion in the steel sheets was found to be higher than expected, potentially compromising the structural safety and service life of these structures. In this context, it is urgent to develop durable solutions for both the rehabilitation of such underpasses and the construction of new ones. Recently, structural systems based on glass fiber–reinforced polymer (GFRP) culvert sections have been proposed as an answer to this issue and have already been used in a few rehabilitations, installed inside of existing steel culverts. However, doubts have been raised about the performance of this new solution, mainly due to the lack of consolidated knowledge about its structural behavior in this specific type of work. This paper presents an experimental and numerical investigation of the performance of a commercially available GFRP culvert system. The experimental program comprised coupon tests and full-scale flexural tests up to failure on GFRP culverts, with a 60-mm-thick wall, produced by filament winding, with a height of ∼2.15 m and a width of ∼3.40 m. Conventional finite-element (FE) models were developed with commercial FE packages to simulate the structural behavior of the GFRP culverts. Following validation, a design parametric analysis was carried out with those FE models, demonstrating that this structural solution is able to comply with serviceability and ultimate-limit states requirements. Finally, this paper presents a case study of the rehabilitation of an underpass originally built with corrugated steel sheets, using this new GFRP culvert. Overall, the results obtained in this study show the feasibility of applying GFRP culverts—both in new structures and when rehabilitating existing underpasses—and of using conventional FE tools in their design.
    • Download: (3.635Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      GFRP Composite Culverts for Hydraulic and Agricultural Underpasses: Structural Behavior, Design, and Application

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282934
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJosé A. Gonilha
    contributor authorJoão R. Correia
    contributor authorMiguel S. Santos
    contributor authorJoão G. Ferreira
    contributor authorFernando A. Branco
    contributor authorRui C. Gomes
    date accessioned2022-05-07T20:48:25Z
    date available2022-05-07T20:48:25Z
    date issued2022-6-1
    identifier other(ASCE)CC.1943-5614.0001206.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282934
    description abstractCorrugated steel-sheet culvert systems were extensively applied in the construction of hydraulic and agricultural highways underpasses from the 1980s until the beginning of the 21st century. Less than 30 years after being built, the level of corrosion in the steel sheets was found to be higher than expected, potentially compromising the structural safety and service life of these structures. In this context, it is urgent to develop durable solutions for both the rehabilitation of such underpasses and the construction of new ones. Recently, structural systems based on glass fiber–reinforced polymer (GFRP) culvert sections have been proposed as an answer to this issue and have already been used in a few rehabilitations, installed inside of existing steel culverts. However, doubts have been raised about the performance of this new solution, mainly due to the lack of consolidated knowledge about its structural behavior in this specific type of work. This paper presents an experimental and numerical investigation of the performance of a commercially available GFRP culvert system. The experimental program comprised coupon tests and full-scale flexural tests up to failure on GFRP culverts, with a 60-mm-thick wall, produced by filament winding, with a height of ∼2.15 m and a width of ∼3.40 m. Conventional finite-element (FE) models were developed with commercial FE packages to simulate the structural behavior of the GFRP culverts. Following validation, a design parametric analysis was carried out with those FE models, demonstrating that this structural solution is able to comply with serviceability and ultimate-limit states requirements. Finally, this paper presents a case study of the rehabilitation of an underpass originally built with corrugated steel sheets, using this new GFRP culvert. Overall, the results obtained in this study show the feasibility of applying GFRP culverts—both in new structures and when rehabilitating existing underpasses—and of using conventional FE tools in their design.
    publisherASCE
    titleGFRP Composite Culverts for Hydraulic and Agricultural Underpasses: Structural Behavior, Design, and Application
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001206
    journal fristpage04022026
    journal lastpage04022026-17
    page17
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian