YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Probabilistic Calibration of Compressive Stress–Strain Models for FRP-Confined Concrete in Square Cross Section Members

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003::page 04022015
    Author:
    Qi-Sen Chen
    ,
    Bo Yu
    ,
    Bing Li
    DOI: 10.1061/(ASCE)CC.1943-5614.0001202
    Publisher: ASCE
    Abstract: The confinement effect of concrete by fiber-reinforced polymer (FRP) jackets may significantly enhance the axial compressive performance of concrete, although the results are variable. Therefore, rational calibration of deterministic models for compressive strength and the associated strain and stress–strain (SS) curves is required based on available experimental databases and selected probabilistic models. To improve the accuracy of the probabilistic model, second branch classifications for the stress–strain curve of FRP-confined concrete are identified within a series combination of uncertainties with computerized classification algorithms before probabilistic calibrations. The Bayesian theorem and Markov chain Monte Carlo (MCMC) approaches were used to update a probabilistic model that includes the critical variables that have been established in previous research. Furthermore, eight representative deterministic strength enhancement models, three strain enhancement models, and four stress–strain models were chosen for evaluation using credible intervals (CIs) and confidence levels (CLs) at different strain levels. Different types of FRPs were also analyzed individually to ensure the validity and reliability of the findings. The suggested probabilistic models can predict the properties of ultimate axial stress and related strain, thus offering an effective method for calibrating the confidence level and computational correctness of deterministic models previously published in the literature.
    • Download: (3.038Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Probabilistic Calibration of Compressive Stress–Strain Models for FRP-Confined Concrete in Square Cross Section Members

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282930
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorQi-Sen Chen
    contributor authorBo Yu
    contributor authorBing Li
    date accessioned2022-05-07T20:48:15Z
    date available2022-05-07T20:48:15Z
    date issued2022-6-1
    identifier other(ASCE)CC.1943-5614.0001202.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282930
    description abstractThe confinement effect of concrete by fiber-reinforced polymer (FRP) jackets may significantly enhance the axial compressive performance of concrete, although the results are variable. Therefore, rational calibration of deterministic models for compressive strength and the associated strain and stress–strain (SS) curves is required based on available experimental databases and selected probabilistic models. To improve the accuracy of the probabilistic model, second branch classifications for the stress–strain curve of FRP-confined concrete are identified within a series combination of uncertainties with computerized classification algorithms before probabilistic calibrations. The Bayesian theorem and Markov chain Monte Carlo (MCMC) approaches were used to update a probabilistic model that includes the critical variables that have been established in previous research. Furthermore, eight representative deterministic strength enhancement models, three strain enhancement models, and four stress–strain models were chosen for evaluation using credible intervals (CIs) and confidence levels (CLs) at different strain levels. Different types of FRPs were also analyzed individually to ensure the validity and reliability of the findings. The suggested probabilistic models can predict the properties of ultimate axial stress and related strain, thus offering an effective method for calibrating the confidence level and computational correctness of deterministic models previously published in the literature.
    publisherASCE
    titleProbabilistic Calibration of Compressive Stress–Strain Models for FRP-Confined Concrete in Square Cross Section Members
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001202
    journal fristpage04022015
    journal lastpage04022015-18
    page18
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian