YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of Different-Sized FRP-Confined Square Compound Concrete Columns Containing Recycled Concrete Lumps

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 002::page 04022003
    Author:
    G. M. Chen
    ,
    J. J. Zhang
    ,
    Guan Lin
    ,
    Y. F. Wu
    ,
    T. Jiang
    DOI: 10.1061/(ASCE)CC.1943-5614.0001192
    Publisher: ASCE
    Abstract: A new concrete recycling method is to crush demolished concrete into distinctly large recycled concrete lumps (RCLs), which are in a direct mix with fresh concrete, leading to the so-called compound concrete. Not only can this method decrease the recycling cost by simplifying the recycling process, it can also increase the recycling ratio. However, existing studies have demonstrated that such compound concrete is inferior to normal concrete. To improve the performance of compound concrete, an effective technique is to confine the compound concrete using fiber-reinforced polymer (FRP)–confining tubes, as demonstrated by a limited number of studies through tests on circular compound concrete columns. However, no studies have been done on FRP-confined rectangular compound concrete columns. Moreover, the possible column size effect in such columns has never been investigated; indeed, existing studies have revealed that FRP-confined rectangular normal concrete columns of different-sized specimens may exhibit obvious behavioral difference. Against this background, this paper presents the results of the first-ever experimental program on glass FRP (GFRP)–confined square compound concrete columns of three different sizes. The columns of different sizes had the same effective FRP confinement stiffness, and, therefore, the possible column size effect could be revealed. It was observed that the column size effect was obvious in the test columns in terms of compressive strength. Finally, three existing compressive strength models originally developed for FRP-confined normal concrete were evaluated using the present test results.
    • Download: (3.365Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of Different-Sized FRP-Confined Square Compound Concrete Columns Containing Recycled Concrete Lumps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282919
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorG. M. Chen
    contributor authorJ. J. Zhang
    contributor authorGuan Lin
    contributor authorY. F. Wu
    contributor authorT. Jiang
    date accessioned2022-05-07T20:47:52Z
    date available2022-05-07T20:47:52Z
    date issued2022-4-1
    identifier other(ASCE)CC.1943-5614.0001192.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282919
    description abstractA new concrete recycling method is to crush demolished concrete into distinctly large recycled concrete lumps (RCLs), which are in a direct mix with fresh concrete, leading to the so-called compound concrete. Not only can this method decrease the recycling cost by simplifying the recycling process, it can also increase the recycling ratio. However, existing studies have demonstrated that such compound concrete is inferior to normal concrete. To improve the performance of compound concrete, an effective technique is to confine the compound concrete using fiber-reinforced polymer (FRP)–confining tubes, as demonstrated by a limited number of studies through tests on circular compound concrete columns. However, no studies have been done on FRP-confined rectangular compound concrete columns. Moreover, the possible column size effect in such columns has never been investigated; indeed, existing studies have revealed that FRP-confined rectangular normal concrete columns of different-sized specimens may exhibit obvious behavioral difference. Against this background, this paper presents the results of the first-ever experimental program on glass FRP (GFRP)–confined square compound concrete columns of three different sizes. The columns of different sizes had the same effective FRP confinement stiffness, and, therefore, the possible column size effect could be revealed. It was observed that the column size effect was obvious in the test columns in terms of compressive strength. Finally, three existing compressive strength models originally developed for FRP-confined normal concrete were evaluated using the present test results.
    publisherASCE
    titleBehavior of Different-Sized FRP-Confined Square Compound Concrete Columns Containing Recycled Concrete Lumps
    typeJournal Paper
    journal volume26
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001192
    journal fristpage04022003
    journal lastpage04022003-17
    page17
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian