YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Driver Clustering Framework by Considering the Variability of Driving Behaviors across Traffic Operation Conditions

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 007::page 04022033
    Author:
    Jianbo Zhang
    ,
    Hongyu Lu
    ,
    Jianping Sun
    DOI: 10.1061/JTEPBS.0000686
    Publisher: ASCE
    Abstract: Analysis of driving behaviors and related driver clustering is of great significance for improving driving safety, but traffic operation conditions (especially road types and operating speed) often are neglected in existing clustering studies, and the impact of excluding traffic conditions has not been investigated thoroughly. This research proposes an improved driver clustering framework by accounting for road types and average speed. The clustering results were compared with those without considering traffic conditions. The input data of more than 34 million records of second-by-second vehicle trajectories from 315 vehicles in Beijing were sliced into segments of 30 s, and these seconds were classified by road types (expressway versus non-expressway) and by 10-km/h average speed intervals. For each driver, the speed variation coefficients (SVCs), acceleration standard deviations (ASTDs), and average negative accelerations (ANAs) by traffic condition were entered into a Gaussian mixture model for an unsupervised clustering of drivers into types of prudent, normal, and aggressive drivers. The improved clustering framework is capable of capturing the variability of driving behaviors (especially dangerous driving behaviors such as sharp decelerations) across drivers, and the comparison demonstrated significant differences between the improved model and the original model with respect to the proportion of every driver type. The improved clustering framework performs better in both intraclass aggregation and interclass separation, and the results of this research indicate the need to consider traffic conditions in driving behavior–based clustering of drivers.
    • Download: (2.305Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Driver Clustering Framework by Considering the Variability of Driving Behaviors across Traffic Operation Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282911
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorJianbo Zhang
    contributor authorHongyu Lu
    contributor authorJianping Sun
    date accessioned2022-05-07T20:47:37Z
    date available2022-05-07T20:47:37Z
    date issued2022-04-18
    identifier otherJTEPBS.0000686.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282911
    description abstractAnalysis of driving behaviors and related driver clustering is of great significance for improving driving safety, but traffic operation conditions (especially road types and operating speed) often are neglected in existing clustering studies, and the impact of excluding traffic conditions has not been investigated thoroughly. This research proposes an improved driver clustering framework by accounting for road types and average speed. The clustering results were compared with those without considering traffic conditions. The input data of more than 34 million records of second-by-second vehicle trajectories from 315 vehicles in Beijing were sliced into segments of 30 s, and these seconds were classified by road types (expressway versus non-expressway) and by 10-km/h average speed intervals. For each driver, the speed variation coefficients (SVCs), acceleration standard deviations (ASTDs), and average negative accelerations (ANAs) by traffic condition were entered into a Gaussian mixture model for an unsupervised clustering of drivers into types of prudent, normal, and aggressive drivers. The improved clustering framework is capable of capturing the variability of driving behaviors (especially dangerous driving behaviors such as sharp decelerations) across drivers, and the comparison demonstrated significant differences between the improved model and the original model with respect to the proportion of every driver type. The improved clustering framework performs better in both intraclass aggregation and interclass separation, and the results of this research indicate the need to consider traffic conditions in driving behavior–based clustering of drivers.
    publisherASCE
    titleImproved Driver Clustering Framework by Considering the Variability of Driving Behaviors across Traffic Operation Conditions
    typeJournal Paper
    journal volume148
    journal issue7
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000686
    journal fristpage04022033
    journal lastpage04022033-10
    page10
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian