YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cooperative Control of Highway On-Ramp with Connected and Automated Vehicles as Platoons Based on Improved Variable Time Headway

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 007::page 04022034
    Author:
    MingBao Pang
    ,
    JiaQi Huang
    DOI: 10.1061/JTEPBS.0000683
    Publisher: ASCE
    Abstract: This work investigated the cooperative control of a highway on-ramp under a connected and automated vehicles (CAVs) environment based on improved variable time headway (IVTH). A mainline section with a connected on-ramp and off-ramp of an intelligent highway were used as research objects. An IVTH model was developed and its stability was proved. The traffic flow model of the section was established and then verified in experiments. A cooperative control strategy of highway on-off-ramps is proposed. The cooperative merging control model (CMCM) based on IVTH (CMCM-IVTH) was constructed in which the influence of off-ramp separation is considered. The model predictive control method based on particle swarm optimization is used to obtain the acceleration and deceleration of platoon leaders with CMCM-IVTH and the time headway of the following vehicles with the traffic flow model based on IVTH. The control effects were determined via simulation experiments. The results indicate that the acceleration and deceleration times of vehicles, fuel consumption, and collision possibility decreased significantly using the proposed method. Under a 20% diverging rate, the maximum number of slow-moving vehicles was reduced by as much as 75.0% and 33.3%, total delay time was reduced by as much as 72.9% and 18.9%, the average traveling velocity was increased by as much as 21.9% and 2.1%, compared with the no-optimization-control method and a method with only cooperative merging control, respectively. The operating efficiency and safety level can be enhanced.
    • Download: (3.255Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cooperative Control of Highway On-Ramp with Connected and Automated Vehicles as Platoons Based on Improved Variable Time Headway

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282910
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorMingBao Pang
    contributor authorJiaQi Huang
    date accessioned2022-05-07T20:47:35Z
    date available2022-05-07T20:47:35Z
    date issued2022-04-18
    identifier otherJTEPBS.0000683.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282910
    description abstractThis work investigated the cooperative control of a highway on-ramp under a connected and automated vehicles (CAVs) environment based on improved variable time headway (IVTH). A mainline section with a connected on-ramp and off-ramp of an intelligent highway were used as research objects. An IVTH model was developed and its stability was proved. The traffic flow model of the section was established and then verified in experiments. A cooperative control strategy of highway on-off-ramps is proposed. The cooperative merging control model (CMCM) based on IVTH (CMCM-IVTH) was constructed in which the influence of off-ramp separation is considered. The model predictive control method based on particle swarm optimization is used to obtain the acceleration and deceleration of platoon leaders with CMCM-IVTH and the time headway of the following vehicles with the traffic flow model based on IVTH. The control effects were determined via simulation experiments. The results indicate that the acceleration and deceleration times of vehicles, fuel consumption, and collision possibility decreased significantly using the proposed method. Under a 20% diverging rate, the maximum number of slow-moving vehicles was reduced by as much as 75.0% and 33.3%, total delay time was reduced by as much as 72.9% and 18.9%, the average traveling velocity was increased by as much as 21.9% and 2.1%, compared with the no-optimization-control method and a method with only cooperative merging control, respectively. The operating efficiency and safety level can be enhanced.
    publisherASCE
    titleCooperative Control of Highway On-Ramp with Connected and Automated Vehicles as Platoons Based on Improved Variable Time Headway
    typeJournal Paper
    journal volume148
    journal issue7
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000683
    journal fristpage04022034
    journal lastpage04022034-12
    page12
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian