YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Automated Vehicle Crashes with a Focus on Vehicle At-Fault, Collision Type, and Injury Outcome

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 006::page 04022024
    Author:
    Boniphace Kutela
    ,
    Raul E. Avelar
    ,
    Prateek Bansal
    DOI: 10.1061/JTEPBS.0000680
    Publisher: ASCE
    Abstract: Automated vehicle (AV) technology is expected to make roads safer. However, until recently only a handful of studies could test such hypotheses due to limited access to testing data. This study contributes to the literature by jointly analyzing the associated factors of three interrelated outcome variables—vehicle at fault, collision type, and injury outcome in AV-involved crashes. We use Bayesian networks to analyze the manually extracted data from reports of 333 AV-involved crashes that occurred in California between January 2017 and October 2021. The summary statistics indicate that rear-end collisions are the dominant (63.5%), while AVs are at fault for a small proportion of crashes (14.4%), and a majority of crashes (84.4%) are noninjury. The joint inferences of the Bayesian networks show that irrespective of the collision type, when the AV is at fault, the chance of the physical injury in a crash increases significantly. Further, the chance of an AV being at fault seems higher in parking locations, and during driving at wet pavements in unclear weather. The chances of AV rear-end collisions are lower in the parking lot, and when nonvehicular participants are involved but increase in high traffic flow roadways. We also find that the likelihood of physical injury is higher at high-speed locations, intersections, and wet pavements. These insights suggest specific areas (unsignalized intersections, less structured right-of-way rules, and wet pavements) where technological improvements could enhance the safety performance of AVs.
    • Download: (1.117Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Automated Vehicle Crashes with a Focus on Vehicle At-Fault, Collision Type, and Injury Outcome

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282908
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorBoniphace Kutela
    contributor authorRaul E. Avelar
    contributor authorPrateek Bansal
    date accessioned2022-05-07T20:47:33Z
    date available2022-05-07T20:47:33Z
    date issued2022-03-22
    identifier otherJTEPBS.0000680.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282908
    description abstractAutomated vehicle (AV) technology is expected to make roads safer. However, until recently only a handful of studies could test such hypotheses due to limited access to testing data. This study contributes to the literature by jointly analyzing the associated factors of three interrelated outcome variables—vehicle at fault, collision type, and injury outcome in AV-involved crashes. We use Bayesian networks to analyze the manually extracted data from reports of 333 AV-involved crashes that occurred in California between January 2017 and October 2021. The summary statistics indicate that rear-end collisions are the dominant (63.5%), while AVs are at fault for a small proportion of crashes (14.4%), and a majority of crashes (84.4%) are noninjury. The joint inferences of the Bayesian networks show that irrespective of the collision type, when the AV is at fault, the chance of the physical injury in a crash increases significantly. Further, the chance of an AV being at fault seems higher in parking locations, and during driving at wet pavements in unclear weather. The chances of AV rear-end collisions are lower in the parking lot, and when nonvehicular participants are involved but increase in high traffic flow roadways. We also find that the likelihood of physical injury is higher at high-speed locations, intersections, and wet pavements. These insights suggest specific areas (unsignalized intersections, less structured right-of-way rules, and wet pavements) where technological improvements could enhance the safety performance of AVs.
    publisherASCE
    titleModeling Automated Vehicle Crashes with a Focus on Vehicle At-Fault, Collision Type, and Injury Outcome
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000680
    journal fristpage04022024
    journal lastpage04022024-11
    page11
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian