YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Large-Scale Eccentrically Loaded GFRP-Reinforced High-Strength Concrete Columns

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 002::page 04021072
    Author:
    Mu’taz Almomani
    ,
    Karam Mahmoud
    ,
    Ehab F. El-Salakawy
    DOI: 10.1061/(ASCE)CC.1943-5614.0001186
    Publisher: ASCE
    Abstract: Ten large-scale high-strength concrete (HSC) circular columns were constructed and tested to failure. Nine columns were internally reinforced with glass fiber-reinforced polymer (GFRP) bars and spirals, whereas one was reinforced with steel bars and spirals to serve as a reference. All columns had a diameter of 350 mm. The variables tested were reinforcement type, spiral pitch, slenderness ratio, eccentricity-to-diameter ratio (e/D), and type of loading (axial or four-point bending). Experimental results showed that both reinforcement types (steel or GFRP) and the spiral pitch did not have a significant effect on the behavior of GFRP-reinforced HSC columns up to the peak load. In addition, a decrease in the axial capacity of the columns as the e/D ratio increased was observed. This was consistent for specimens of both slenderness ratios of 14 and 20. Columns with a higher slenderness ratio showed a lower axial capacity for all specimens tested under the same e/D ratio. Furthermore, slender columns with higher e/D ratio underwent much larger deformations; both axially and laterally. For columns of both slenderness ratios, axial load–bending moment interaction diagrams were produced using the experimental results and were compared to the predictions of available codes and guidelines.
    • Download: (1.832Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Large-Scale Eccentrically Loaded GFRP-Reinforced High-Strength Concrete Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282905
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorMu’taz Almomani
    contributor authorKaram Mahmoud
    contributor authorEhab F. El-Salakawy
    date accessioned2022-05-07T20:47:26Z
    date available2022-05-07T20:47:26Z
    date issued2022-4-1
    identifier other(ASCE)CC.1943-5614.0001186.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282905
    description abstractTen large-scale high-strength concrete (HSC) circular columns were constructed and tested to failure. Nine columns were internally reinforced with glass fiber-reinforced polymer (GFRP) bars and spirals, whereas one was reinforced with steel bars and spirals to serve as a reference. All columns had a diameter of 350 mm. The variables tested were reinforcement type, spiral pitch, slenderness ratio, eccentricity-to-diameter ratio (e/D), and type of loading (axial or four-point bending). Experimental results showed that both reinforcement types (steel or GFRP) and the spiral pitch did not have a significant effect on the behavior of GFRP-reinforced HSC columns up to the peak load. In addition, a decrease in the axial capacity of the columns as the e/D ratio increased was observed. This was consistent for specimens of both slenderness ratios of 14 and 20. Columns with a higher slenderness ratio showed a lower axial capacity for all specimens tested under the same e/D ratio. Furthermore, slender columns with higher e/D ratio underwent much larger deformations; both axially and laterally. For columns of both slenderness ratios, axial load–bending moment interaction diagrams were produced using the experimental results and were compared to the predictions of available codes and guidelines.
    publisherASCE
    titleExperimental Investigation of Large-Scale Eccentrically Loaded GFRP-Reinforced High-Strength Concrete Columns
    typeJournal Paper
    journal volume26
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001186
    journal fristpage04021072
    journal lastpage04021072-13
    page13
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian