YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization Model of Life Cycle Repair Decisions for Track Network

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 006::page 04022032
    Author:
    Bai Wenfei
    ,
    Wei Yun
    ,
    Liu Rengkui
    DOI: 10.1061/JTEPBS.0000667
    Publisher: ASCE
    Abstract: The track is the basis of railway and subway train operations. Under the repeated action of traffic load and the influence of line structure, geographical environment, and other factors, the condition of the track facility deteriorates, affecting driving safety, shortening the service life of the facility, and increasing maintenance costs. Therefore, it is of great significance to investigate the optimization of rail facility network life cycle repair decisions and devise a reasonable repair plan for scientifically controlling the repair cost under the prerequisite of ensuring operational safety. This study focused on optimizing track facility network life cycle repair decisions comprehensively considering the heterogeneity, uncertainty, and linkage of rail facility degradation. The minimum life cycle cost of the facility network was considered as the optimization objective, and an adaptive learning (AL) mechanism-based maximum likelihood estimation (MLE) method was developed. A network-level life cycle repair decision optimization model based on an AL-Markov decision process (AL-MDP) was constructed and solved by using the Lpsolve toolkit in MATLAB. The Beijing Metro facility network, which is composed of small-radius curved rail units, was considered as an example, and based on a simulation of the network state using the Monte Carlo method, the proposed network-level AL-MDP model and network-level MDP model without AL were used to optimize repair decisions with a planning cycle of 10 years. The results were compared and analyzed, demonstrating that the proposed network-level AL-MDP model can effectively improve the quality of facility network repair decisions compared with the MDP model and that it has higher practicability.
    • Download: (2.073Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization Model of Life Cycle Repair Decisions for Track Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282897
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorBai Wenfei
    contributor authorWei Yun
    contributor authorLiu Rengkui
    date accessioned2022-05-07T20:47:04Z
    date available2022-05-07T20:47:04Z
    date issued2022-04-14
    identifier otherJTEPBS.0000667.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282897
    description abstractThe track is the basis of railway and subway train operations. Under the repeated action of traffic load and the influence of line structure, geographical environment, and other factors, the condition of the track facility deteriorates, affecting driving safety, shortening the service life of the facility, and increasing maintenance costs. Therefore, it is of great significance to investigate the optimization of rail facility network life cycle repair decisions and devise a reasonable repair plan for scientifically controlling the repair cost under the prerequisite of ensuring operational safety. This study focused on optimizing track facility network life cycle repair decisions comprehensively considering the heterogeneity, uncertainty, and linkage of rail facility degradation. The minimum life cycle cost of the facility network was considered as the optimization objective, and an adaptive learning (AL) mechanism-based maximum likelihood estimation (MLE) method was developed. A network-level life cycle repair decision optimization model based on an AL-Markov decision process (AL-MDP) was constructed and solved by using the Lpsolve toolkit in MATLAB. The Beijing Metro facility network, which is composed of small-radius curved rail units, was considered as an example, and based on a simulation of the network state using the Monte Carlo method, the proposed network-level AL-MDP model and network-level MDP model without AL were used to optimize repair decisions with a planning cycle of 10 years. The results were compared and analyzed, demonstrating that the proposed network-level AL-MDP model can effectively improve the quality of facility network repair decisions compared with the MDP model and that it has higher practicability.
    publisherASCE
    titleOptimization Model of Life Cycle Repair Decisions for Track Network
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000667
    journal fristpage04022032
    journal lastpage04022032-16
    page16
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian