YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Data-Driven Method for Congestion Identification and Classification

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 004::page 04022012
    Author:
    Atousa Zarindast
    ,
    Subhadipto Poddar
    ,
    Anuj Sharma
    DOI: 10.1061/JTEPBS.0000654
    Publisher: ASCE
    Abstract: Congestion detection is one of the key steps in reducing delays and associated costs in traffic management. With the increasing use of global positioning system (GPS)-based navigation, promising speed data are now available. This study used extensive historical probe data (year 2016) in Des Moines, Iowa. We used Bayesian change point detection to segment the speed signal and detect temporal congestion. The detected congestion events were then classified as recurrent congestion (RC) or nonrecurrent congestion (NRC). This paper thus presents a robust statistical, big-data-driven expert system and a big-data-mining methodology for identifying both recurrent and nonrecurrent congestion.
    • Download: (1.290Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Data-Driven Method for Congestion Identification and Classification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282884
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorAtousa Zarindast
    contributor authorSubhadipto Poddar
    contributor authorAnuj Sharma
    date accessioned2022-05-07T20:46:34Z
    date available2022-05-07T20:46:34Z
    date issued2022-02-09
    identifier otherJTEPBS.0000654.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282884
    description abstractCongestion detection is one of the key steps in reducing delays and associated costs in traffic management. With the increasing use of global positioning system (GPS)-based navigation, promising speed data are now available. This study used extensive historical probe data (year 2016) in Des Moines, Iowa. We used Bayesian change point detection to segment the speed signal and detect temporal congestion. The detected congestion events were then classified as recurrent congestion (RC) or nonrecurrent congestion (NRC). This paper thus presents a robust statistical, big-data-driven expert system and a big-data-mining methodology for identifying both recurrent and nonrecurrent congestion.
    publisherASCE
    titleA Data-Driven Method for Congestion Identification and Classification
    typeJournal Paper
    journal volume148
    journal issue4
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000654
    journal fristpage04022012
    journal lastpage04022012-10
    page10
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian