YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Data-Driven Case Study Following the Implementation of an Adaptive Traffic Control System in Midtown Manhattan

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 004::page 05022001
    Author:
    Diego Correa
    ,
    John C. Falcocchio
    DOI: 10.1061/JTEPBS.0000645
    Publisher: ASCE
    Abstract: This paper evaluated the congestion reduction benefits over a 6-year period from the implementation of an adaptive traffic control system (ATCS) in a congested area of Manhattan, New York, bounded by 2nd and 6th Avenues and 42nd and 57th Streets—known as the Midtown-in-Motion (MIM) area. A methodology using taxi Global Positioning System (GPS) sensors was used to measure traffic speed. Traffic speeds were calculated for May weekdays before the ATCS was installed (May 2011) and for each subsequent year (May 2012 to May 2016). Within 1 to 2 years after the implementation of the ATCS, the area’s traffic speed increased on avenues and cross streets. This gain, however, could not be sustained in subsequent years because of intervening changes in key factors impacting traffic congestion. These factors included reduction in roadway space/capacity for motor vehicles, lack of effective traffic enforcement to maintain/protect available roadway capacity, increased vehicle miles traveled (VMT) from transportation network company vehicles, and increasing volume of bicycle trips sharing street space with vehicles/pedestrians. This paper’s two key findings are, first, traffic speed gains initially seen in the MIM area after 1 year of ATCS implementation could not be sustained because intervening external factors reduced capacity and increased VMT. However, during the same analysis period, the rest of the Midtown Core area (without ATCS deployment) experienced a greater speed loss than the MIM area, indicating the effectiveness of ATCS deployment in minimizing losses in traffic speed. Second, to protect street network capacity and to minimize VMT growth, midtown Manhattan requires adopting proactive, collaborative, and coordinated strategies by the three key agencies involved with traffic management in New York City (NYC): the NYC Department of Transportation (traffic control system technology), the NYC Police Department (traffic enforcement), and the Mayor’s office (traffic demand mitigation policies).
    • Download: (2.897Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Data-Driven Case Study Following the Implementation of an Adaptive Traffic Control System in Midtown Manhattan

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282874
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorDiego Correa
    contributor authorJohn C. Falcocchio
    date accessioned2022-05-07T20:46:09Z
    date available2022-05-07T20:46:09Z
    date issued2022-02-15
    identifier otherJTEPBS.0000645.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282874
    description abstractThis paper evaluated the congestion reduction benefits over a 6-year period from the implementation of an adaptive traffic control system (ATCS) in a congested area of Manhattan, New York, bounded by 2nd and 6th Avenues and 42nd and 57th Streets—known as the Midtown-in-Motion (MIM) area. A methodology using taxi Global Positioning System (GPS) sensors was used to measure traffic speed. Traffic speeds were calculated for May weekdays before the ATCS was installed (May 2011) and for each subsequent year (May 2012 to May 2016). Within 1 to 2 years after the implementation of the ATCS, the area’s traffic speed increased on avenues and cross streets. This gain, however, could not be sustained in subsequent years because of intervening changes in key factors impacting traffic congestion. These factors included reduction in roadway space/capacity for motor vehicles, lack of effective traffic enforcement to maintain/protect available roadway capacity, increased vehicle miles traveled (VMT) from transportation network company vehicles, and increasing volume of bicycle trips sharing street space with vehicles/pedestrians. This paper’s two key findings are, first, traffic speed gains initially seen in the MIM area after 1 year of ATCS implementation could not be sustained because intervening external factors reduced capacity and increased VMT. However, during the same analysis period, the rest of the Midtown Core area (without ATCS deployment) experienced a greater speed loss than the MIM area, indicating the effectiveness of ATCS deployment in minimizing losses in traffic speed. Second, to protect street network capacity and to minimize VMT growth, midtown Manhattan requires adopting proactive, collaborative, and coordinated strategies by the three key agencies involved with traffic management in New York City (NYC): the NYC Department of Transportation (traffic control system technology), the NYC Police Department (traffic enforcement), and the Mayor’s office (traffic demand mitigation policies).
    publisherASCE
    titleA Data-Driven Case Study Following the Implementation of an Adaptive Traffic Control System in Midtown Manhattan
    typeJournal Paper
    journal volume148
    journal issue4
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000645
    journal fristpage05022001
    journal lastpage05022001-13
    page13
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian