YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Disentangling City-Level Macroscopic Traffic Performance Patterns through a Trigonometric Multiseasonal Filtering Algorithm: Inspiration from Big Data of Ride-Sourcing Trips

    Source: Journal of Transportation Engineering, Part A: Systems:;2021:;Volume ( 148 ):;issue: 003::page 04021120
    Author:
    Lu Ma
    ,
    Feng Yuan
    ,
    Xuedong Yan
    ,
    Jiechao Zhang
    DOI: 10.1061/JTEPBS.0000628
    Publisher: ASCE
    Abstract: This study seeks to design a city-level trip speed performance index (CTSPI) providing an alternative aspect in quantifying the traffic performance of an entire city. Another objective is to disentangle the original CTSPI time series into several featured patterns, including a trend pattern, two seasonality patterns, and a remainder pattern. The big data in the form of observations of ride-sourcing trips in Beijing, China were adopted. This study also introduces a state-space model, the TBATS [trigonometric, Box–Cox transformation, auto-regressive moving average (ARMA) errors, trend, and seasonal components] filtering procedure to decompose the CTSPI time series. This study adopts Beijing as a representative example because the city has very typical and complicated traffic performance patterns. The proposed CTSPI directly reflects the average trip speed, normalized by the best performance supplied by the corresponding infrastructure systems. After filtering out fluctuation, noise, and irregular patterns, it reveals a smooth and clear-cut trend in the evolving process of the city’s traffic condition, which was never previously disclosed and is important in understanding the macroscopic long-term tendencies of the city’s traffic performance. The results indicate that the CTSPI is capable of capturing the traffic performance of the city well and can sense the influence of special dates or major events, such as the Beijing 2022 Olympic Winter Games, advising tremendous application of traffic management. City-level macroscopic traffic performance is usually measured as index quantities and used to assess traffic situations in different cities. Most often, it is utilized to provide a quantified impression of the degree of congestion to the public, or as traffic-congestion criteria for ranking cities. This study illustrates the importance of measuring city-level macroscopic traffic performance, especially on a daily basis as is appropriate for gauging the impacts of many macroscopic factors on city-level traffic situations.
    • Download: (686.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Disentangling City-Level Macroscopic Traffic Performance Patterns through a Trigonometric Multiseasonal Filtering Algorithm: Inspiration from Big Data of Ride-Sourcing Trips

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282856
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorLu Ma
    contributor authorFeng Yuan
    contributor authorXuedong Yan
    contributor authorJiechao Zhang
    date accessioned2022-05-07T20:45:29Z
    date available2022-05-07T20:45:29Z
    date issued2021-12-23
    identifier otherJTEPBS.0000628.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282856
    description abstractThis study seeks to design a city-level trip speed performance index (CTSPI) providing an alternative aspect in quantifying the traffic performance of an entire city. Another objective is to disentangle the original CTSPI time series into several featured patterns, including a trend pattern, two seasonality patterns, and a remainder pattern. The big data in the form of observations of ride-sourcing trips in Beijing, China were adopted. This study also introduces a state-space model, the TBATS [trigonometric, Box–Cox transformation, auto-regressive moving average (ARMA) errors, trend, and seasonal components] filtering procedure to decompose the CTSPI time series. This study adopts Beijing as a representative example because the city has very typical and complicated traffic performance patterns. The proposed CTSPI directly reflects the average trip speed, normalized by the best performance supplied by the corresponding infrastructure systems. After filtering out fluctuation, noise, and irregular patterns, it reveals a smooth and clear-cut trend in the evolving process of the city’s traffic condition, which was never previously disclosed and is important in understanding the macroscopic long-term tendencies of the city’s traffic performance. The results indicate that the CTSPI is capable of capturing the traffic performance of the city well and can sense the influence of special dates or major events, such as the Beijing 2022 Olympic Winter Games, advising tremendous application of traffic management. City-level macroscopic traffic performance is usually measured as index quantities and used to assess traffic situations in different cities. Most often, it is utilized to provide a quantified impression of the degree of congestion to the public, or as traffic-congestion criteria for ranking cities. This study illustrates the importance of measuring city-level macroscopic traffic performance, especially on a daily basis as is appropriate for gauging the impacts of many macroscopic factors on city-level traffic situations.
    publisherASCE
    titleDisentangling City-Level Macroscopic Traffic Performance Patterns through a Trigonometric Multiseasonal Filtering Algorithm: Inspiration from Big Data of Ride-Sourcing Trips
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000628
    journal fristpage04021120
    journal lastpage04021120-12
    page12
    treeJournal of Transportation Engineering, Part A: Systems:;2021:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian