YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving the Mechanical Performance of Timber Railway Sleepers with Carbon Fabric Reinforcement: An Experimental and Numerical Study

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 001::page 04021064
    Author:
    Mohammad Siahkouhi
    ,
    Xinjie Li
    ,
    Xiaodong Han
    ,
    Guoqing Jing
    DOI: 10.1061/(ASCE)CC.1943-5614.0001178
    Publisher: ASCE
    Abstract: This paper proposes an externally bonded carbon fabric system to mitigate the causes of timber sleeper deterioration. Therefore, three methods of carbon fabric application for timber sleeper reinforcement, namely, carbon fabric-wrapped timber sleepers (CWT), one-layer carbon fabric timber sleepers with anchors (OCT), and two-layer carbon fabric timber sleepers with anchors (TCT), are studied and compared with conventional timber sleepers (CTS). Modal analysis is performed to obtain the sleeper damping ratios, and three bending moment tests are conducted to compare their load capacities. Furthermore, finite-element method (FEM) modeling is developed to compare the stress levels within each carbon fabric-strengthened sleeper. The bending moment test results indicate a high improvement in the load–displacement behavior of timber sleepers in the presence of carbon fabric, especially for the CWT, which shows a 55% improvement compared with the CTS, followed by the TCT and OCT, which show 50% and 33% improvements. Wrapped and two-layer and one-layer anchored systems have damping ratios of 0.21, 0.26, and 0.18, respectively, which are higher than that of conventional timber sleepers, at 0.17. The FEM results show that the stress levels of the timber sleepers with carbon fabric-strengthened systems decrease compared to CTS. Finally, a desirability function is developed to select the optimum carbon fabric system based on the load–displacement behavior, damping ratio, and insertion loss, which indicates a two-layer carbon fabric reinforcing system.
    • Download: (2.186Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving the Mechanical Performance of Timber Railway Sleepers with Carbon Fabric Reinforcement: An Experimental and Numerical Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282817
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorMohammad Siahkouhi
    contributor authorXinjie Li
    contributor authorXiaodong Han
    contributor authorGuoqing Jing
    date accessioned2022-05-07T20:43:54Z
    date available2022-05-07T20:43:54Z
    date issued2022-2-1
    identifier other(ASCE)CC.1943-5614.0001178.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282817
    description abstractThis paper proposes an externally bonded carbon fabric system to mitigate the causes of timber sleeper deterioration. Therefore, three methods of carbon fabric application for timber sleeper reinforcement, namely, carbon fabric-wrapped timber sleepers (CWT), one-layer carbon fabric timber sleepers with anchors (OCT), and two-layer carbon fabric timber sleepers with anchors (TCT), are studied and compared with conventional timber sleepers (CTS). Modal analysis is performed to obtain the sleeper damping ratios, and three bending moment tests are conducted to compare their load capacities. Furthermore, finite-element method (FEM) modeling is developed to compare the stress levels within each carbon fabric-strengthened sleeper. The bending moment test results indicate a high improvement in the load–displacement behavior of timber sleepers in the presence of carbon fabric, especially for the CWT, which shows a 55% improvement compared with the CTS, followed by the TCT and OCT, which show 50% and 33% improvements. Wrapped and two-layer and one-layer anchored systems have damping ratios of 0.21, 0.26, and 0.18, respectively, which are higher than that of conventional timber sleepers, at 0.17. The FEM results show that the stress levels of the timber sleepers with carbon fabric-strengthened systems decrease compared to CTS. Finally, a desirability function is developed to select the optimum carbon fabric system based on the load–displacement behavior, damping ratio, and insertion loss, which indicates a two-layer carbon fabric reinforcing system.
    publisherASCE
    titleImproving the Mechanical Performance of Timber Railway Sleepers with Carbon Fabric Reinforcement: An Experimental and Numerical Study
    typeJournal Paper
    journal volume26
    journal issue1
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001178
    journal fristpage04021064
    journal lastpage04021064-13
    page13
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian