YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interfacial Behavior of Carbon FRP-to-Granite Joints with Mechanical Fastening

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 001::page 04021066
    Author:
    Pengda Li
    ,
    Yao Zhao
    ,
    Yu-Fei Wu
    ,
    Jian-Ping Lin
    DOI: 10.1061/(ASCE)CC.1943-5614.0001177
    Publisher: ASCE
    Abstract: Premature debonding is a major obstacle for the utilization of fiber-reinforced polymer (FRP)-reinforced stone structures due to the brittle characteristics of stone materials. The study of the interfacial behavior between FRP sheets and stone materials with mechanical anchoring is critical when relative slip occurs at the joint interface. In this study, 45 single shear tests were performed to investigate the interfacial properties between FRP sheets and granite under static loading. Several variables were considered, including the differences in the FRP sheet stiffnesses and anchor properties (e.g., the number and spacing of fasteners, bolt torque, and bolt diameter). The failure modes, strain distribution, and load–slip curve of the designed specimens were discussed. The results indicate that compared with the external bonding (EB) method, the hybrid bonded FRP (HB-FRP) strengthening technology significantly improves the FRP usage efficiency, and the ultimate bond load and slip can be enhanced with an increase in the number of anchors and the torque. In addition, the stiffness of the FRP sheet and bolt diameter negatively influence the ultimate slip of the FRP sheet–granite interface, and the slip between the two anchors depends on the ratio of the effective bond length (EBL) and anchor space. These test results offer helpful information for designing HB-FRP reinforced stone structures.
    • Download: (6.186Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interfacial Behavior of Carbon FRP-to-Granite Joints with Mechanical Fastening

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282806
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorPengda Li
    contributor authorYao Zhao
    contributor authorYu-Fei Wu
    contributor authorJian-Ping Lin
    date accessioned2022-05-07T20:43:31Z
    date available2022-05-07T20:43:31Z
    date issued2022-2-1
    identifier other(ASCE)CC.1943-5614.0001177.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282806
    description abstractPremature debonding is a major obstacle for the utilization of fiber-reinforced polymer (FRP)-reinforced stone structures due to the brittle characteristics of stone materials. The study of the interfacial behavior between FRP sheets and stone materials with mechanical anchoring is critical when relative slip occurs at the joint interface. In this study, 45 single shear tests were performed to investigate the interfacial properties between FRP sheets and granite under static loading. Several variables were considered, including the differences in the FRP sheet stiffnesses and anchor properties (e.g., the number and spacing of fasteners, bolt torque, and bolt diameter). The failure modes, strain distribution, and load–slip curve of the designed specimens were discussed. The results indicate that compared with the external bonding (EB) method, the hybrid bonded FRP (HB-FRP) strengthening technology significantly improves the FRP usage efficiency, and the ultimate bond load and slip can be enhanced with an increase in the number of anchors and the torque. In addition, the stiffness of the FRP sheet and bolt diameter negatively influence the ultimate slip of the FRP sheet–granite interface, and the slip between the two anchors depends on the ratio of the effective bond length (EBL) and anchor space. These test results offer helpful information for designing HB-FRP reinforced stone structures.
    publisherASCE
    titleInterfacial Behavior of Carbon FRP-to-Granite Joints with Mechanical Fastening
    typeJournal Paper
    journal volume26
    journal issue1
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001177
    journal fristpage04021066
    journal lastpage04021066-20
    page20
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian