YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    PCDNet: Seed Operation–Based Deep Learning Model for Pavement Crack Detection on 3D Asphalt Surface

    Source: Journal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 002::page 04022023
    Author:
    Tian Wen
    ,
    Hong Lang
    ,
    Shuo Ding
    ,
    Jian John Lu
    ,
    Yingying Xing
    DOI: 10.1061/JPEODX.0000367
    Publisher: ASCE
    Abstract: The detection of pavement crack plays a critical role in pavement maintenance and rehabilitation because pavement cracking is one of the most important indicators for the pavement condition evaluation, as well as an early manifestation of other pavement distresses. To detect cracks accurately, precisely, and completely based on three-dimensional (3D) pavement images, this paper proposes a deep learning framework based on a convolutional neural network (CNN) and pixel-level improved crack seed algorithm, called Pavement Crack Detection Net (PCDNet). Firstly, the CNN layer based on the convolution implementation of sliding windows is applied to each 3D pavement image to divide it into 8×8 pavement patches and classify each patch into two types: the background patch, and the pavement crack patch. Secondly, the seed layer, i.e., an automatic threshold pixel-level crack seed recognition algorithm is used to detect the crack distress further and depict the complete contour simultaneously. Finally, the region growing layer is utilized to ensure the continuity of the cracks. Due to the good combination of the CNN and the algorithm, PCDNet needs only a patch-level data set for training but can output pixel-level results, a great novelty in crack detection. In this paper, 5,000 3D pavement images were selected from an established image library. PCDNet was trained with 4,300 3D pavement images and further validated based on 500 3D pavement images. The test experiment based on the remaining 200 images showed that PCDNet can achieve high precision (0.885), recall (0.902), and F-1 score (0.893) simultaneously. It also was demonstrated that PCDNet can detect different types of pavement crack under various conditions and resist noncrack pixels with elevation variation features, such as pavement edge drop-offs, curbs, spalling, and bridge expansion joints. Compared with recently developed crack detection methods based on imaging algorithms, PCDNet is capable of not only eliminating more local noise and detecting more fine cracks, but also maintaining much faster processing speed.
    • Download: (2.211Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      PCDNet: Seed Operation–Based Deep Learning Model for Pavement Crack Detection on 3D Asphalt Surface

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282802
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorTian Wen
    contributor authorHong Lang
    contributor authorShuo Ding
    contributor authorJian John Lu
    contributor authorYingying Xing
    date accessioned2022-05-07T20:43:13Z
    date available2022-05-07T20:43:13Z
    date issued2022-03-17
    identifier otherJPEODX.0000367.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282802
    description abstractThe detection of pavement crack plays a critical role in pavement maintenance and rehabilitation because pavement cracking is one of the most important indicators for the pavement condition evaluation, as well as an early manifestation of other pavement distresses. To detect cracks accurately, precisely, and completely based on three-dimensional (3D) pavement images, this paper proposes a deep learning framework based on a convolutional neural network (CNN) and pixel-level improved crack seed algorithm, called Pavement Crack Detection Net (PCDNet). Firstly, the CNN layer based on the convolution implementation of sliding windows is applied to each 3D pavement image to divide it into 8×8 pavement patches and classify each patch into two types: the background patch, and the pavement crack patch. Secondly, the seed layer, i.e., an automatic threshold pixel-level crack seed recognition algorithm is used to detect the crack distress further and depict the complete contour simultaneously. Finally, the region growing layer is utilized to ensure the continuity of the cracks. Due to the good combination of the CNN and the algorithm, PCDNet needs only a patch-level data set for training but can output pixel-level results, a great novelty in crack detection. In this paper, 5,000 3D pavement images were selected from an established image library. PCDNet was trained with 4,300 3D pavement images and further validated based on 500 3D pavement images. The test experiment based on the remaining 200 images showed that PCDNet can achieve high precision (0.885), recall (0.902), and F-1 score (0.893) simultaneously. It also was demonstrated that PCDNet can detect different types of pavement crack under various conditions and resist noncrack pixels with elevation variation features, such as pavement edge drop-offs, curbs, spalling, and bridge expansion joints. Compared with recently developed crack detection methods based on imaging algorithms, PCDNet is capable of not only eliminating more local noise and detecting more fine cracks, but also maintaining much faster processing speed.
    publisherASCE
    titlePCDNet: Seed Operation–Based Deep Learning Model for Pavement Crack Detection on 3D Asphalt Surface
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000367
    journal fristpage04022023
    journal lastpage04022023-11
    page11
    treeJournal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian