YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Designs of Abrasion Resistant and Durable Concrete Pavements Made with SCMs for Cold Climates

    Source: Journal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 002::page 04022017
    Author:
    Diane Murph
    ,
    Jun Liu
    ,
    Jenny Liu
    DOI: 10.1061/JPEODX.0000360
    Publisher: ASCE
    Abstract: Rutting from studded tire wear is a typical pavement distress in cold climates such as that of Alaska and other northern states. Current state-of-the-art advancements in material technology and concrete pavement design have allowed for implementation of improved materials and concrete pavement sections that are more resistant to rutting. The addition of supplementary cementitious materials (SCMs) has been identified as one effective way to produce concrete pavements with better abrasion resistance. The objective of this study was to identify and develop concrete pavement mix designs containing SCMs that can provide excellent abrasion resistance and durability to address rutting from studded tire wear and accommodate extreme climate conditions in cold regions. This study involved two phases of work. During Phase I, a series of ternary mixes containing silica fume with either slag or class F fly ash were produced and tested. The results were statistically analyzed using Minitab version 19.2.0 to identify mix designs with good performance in terms of workability, compressive strength, and flexural strength requirements for pavement applications. In Phase II, the mechanical properties and durability of concrete specimens with selected mix designs from Phase I were further evaluated to identify the optimum mix design with SCMs. This included tests for compressive strength, drying shrinkage, abrasion resistance, and other dualities such as scaling resistance to deicer salts, freeze-thaw resistance, and chloride ion penetration resistance. In terms of the properties evaluated within this study along with a cost analysis, five mixes, including four optimal mixes and the control, all provided good performance, but a quaternary mix design containing primarily silica fume and slag (SL12 SF4 FA1 mix) appeared to provide the overall best performance considering strength, durability, abrasion resistance, and cost.
    • Download: (1006.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Designs of Abrasion Resistant and Durable Concrete Pavements Made with SCMs for Cold Climates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282796
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorDiane Murph
    contributor authorJun Liu
    contributor authorJenny Liu
    date accessioned2022-05-07T20:42:53Z
    date available2022-05-07T20:42:53Z
    date issued2022-03-10
    identifier otherJPEODX.0000360.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282796
    description abstractRutting from studded tire wear is a typical pavement distress in cold climates such as that of Alaska and other northern states. Current state-of-the-art advancements in material technology and concrete pavement design have allowed for implementation of improved materials and concrete pavement sections that are more resistant to rutting. The addition of supplementary cementitious materials (SCMs) has been identified as one effective way to produce concrete pavements with better abrasion resistance. The objective of this study was to identify and develop concrete pavement mix designs containing SCMs that can provide excellent abrasion resistance and durability to address rutting from studded tire wear and accommodate extreme climate conditions in cold regions. This study involved two phases of work. During Phase I, a series of ternary mixes containing silica fume with either slag or class F fly ash were produced and tested. The results were statistically analyzed using Minitab version 19.2.0 to identify mix designs with good performance in terms of workability, compressive strength, and flexural strength requirements for pavement applications. In Phase II, the mechanical properties and durability of concrete specimens with selected mix designs from Phase I were further evaluated to identify the optimum mix design with SCMs. This included tests for compressive strength, drying shrinkage, abrasion resistance, and other dualities such as scaling resistance to deicer salts, freeze-thaw resistance, and chloride ion penetration resistance. In terms of the properties evaluated within this study along with a cost analysis, five mixes, including four optimal mixes and the control, all provided good performance, but a quaternary mix design containing primarily silica fume and slag (SL12 SF4 FA1 mix) appeared to provide the overall best performance considering strength, durability, abrasion resistance, and cost.
    publisherASCE
    titleDesigns of Abrasion Resistant and Durable Concrete Pavements Made with SCMs for Cold Climates
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000360
    journal fristpage04022017
    journal lastpage04022017-10
    page10
    treeJournal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian