YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhancement of Bond Performance of FRP Bars with Seawater Coral Aggregate Concrete by Utilizing Ecoefficient Slag-Based Alkali-Activated Materials

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 001::page 04021059
    Author:
    Bai Zhang
    ,
    Hong Zhu
    ,
    Zhiqiang Dong
    ,
    Qiang Wang
    DOI: 10.1061/(ASCE)CC.1943-5614.0001174
    Publisher: ASCE
    Abstract: To effectively utilize marine resources on reefs or islands and to improve the bearing capacity and serviceability of fiber-reinforced polymer (FRP) reinforced seawater coral aggregate concrete (CAC) structures in marine environments, this paper investigates the applicability of using alkali-activated materials (AAMs) as substitutes for ordinary Portland cement (OPC) in FRP reinforced CAC structures. Three types of FRP bars, i.e., carbon-FRP (CFRP), glass-FRP (GFRP), and basalt-FRP (BFRP) bars, with different bond lengths (L = 50, 70, and 100 mm) were selected to determine the bond characteristics of FRP bars in alkali-activated seawater coral aggregate concrete (AACAC), as well as in cement-based CAC, which was chosen as the reference. Moreover, a scanning electron microscope (SEM) was employed to detect the microstructure characteristic at the interfacial transition zone (ITZ) between the coral aggregates and the paste matrix. The results indicated that the AACAC specimens contained a stronger mechanical bite force at the paste–aggregate interface and exhibited a higher splitting tensile strength (approximately 6.7% improvement) than those of the CAC specimens. Additionally, the ultimate bond strength and the initial slope of the bond–slip curves at the ascending branch (i.e., initial bond stiffness) were significantly improved by utilizing AAMs. Improvements of approximately 26.6%, 26.8%, and 16.9% were achieved in the bond strength for the specimens with CFRP, GFRP, and BFRP bars, respectively. It was concluded that the utilization of AAMs as alternatives for OPC was an effective method in improving the mechanical interaction at the paste–aggregate interface and promoting the anchorage capacity of FRP bars in CAC, which may represent a promising approach for applying AAMs in FRP reinforced CAC structures or members.
    • Download: (2.628Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhancement of Bond Performance of FRP Bars with Seawater Coral Aggregate Concrete by Utilizing Ecoefficient Slag-Based Alkali-Activated Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282782
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorBai Zhang
    contributor authorHong Zhu
    contributor authorZhiqiang Dong
    contributor authorQiang Wang
    date accessioned2022-05-07T20:42:15Z
    date available2022-05-07T20:42:15Z
    date issued2022-2-1
    identifier other(ASCE)CC.1943-5614.0001174.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282782
    description abstractTo effectively utilize marine resources on reefs or islands and to improve the bearing capacity and serviceability of fiber-reinforced polymer (FRP) reinforced seawater coral aggregate concrete (CAC) structures in marine environments, this paper investigates the applicability of using alkali-activated materials (AAMs) as substitutes for ordinary Portland cement (OPC) in FRP reinforced CAC structures. Three types of FRP bars, i.e., carbon-FRP (CFRP), glass-FRP (GFRP), and basalt-FRP (BFRP) bars, with different bond lengths (L = 50, 70, and 100 mm) were selected to determine the bond characteristics of FRP bars in alkali-activated seawater coral aggregate concrete (AACAC), as well as in cement-based CAC, which was chosen as the reference. Moreover, a scanning electron microscope (SEM) was employed to detect the microstructure characteristic at the interfacial transition zone (ITZ) between the coral aggregates and the paste matrix. The results indicated that the AACAC specimens contained a stronger mechanical bite force at the paste–aggregate interface and exhibited a higher splitting tensile strength (approximately 6.7% improvement) than those of the CAC specimens. Additionally, the ultimate bond strength and the initial slope of the bond–slip curves at the ascending branch (i.e., initial bond stiffness) were significantly improved by utilizing AAMs. Improvements of approximately 26.6%, 26.8%, and 16.9% were achieved in the bond strength for the specimens with CFRP, GFRP, and BFRP bars, respectively. It was concluded that the utilization of AAMs as alternatives for OPC was an effective method in improving the mechanical interaction at the paste–aggregate interface and promoting the anchorage capacity of FRP bars in CAC, which may represent a promising approach for applying AAMs in FRP reinforced CAC structures or members.
    publisherASCE
    titleEnhancement of Bond Performance of FRP Bars with Seawater Coral Aggregate Concrete by Utilizing Ecoefficient Slag-Based Alkali-Activated Materials
    typeJournal Paper
    journal volume26
    journal issue1
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001174
    journal fristpage04021059
    journal lastpage04021059-11
    page11
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian