YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aging Characteristics of a Colored Ultrathin Overlay

    Source: Journal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 002::page 04022009
    Author:
    Xuelian Li
    ,
    Le Yang
    ,
    Sang Luo
    ,
    Xiaojin Song
    ,
    Liang Fan
    ,
    Jijiang Chen
    ,
    Aboelkasim Diab
    ,
    Junhong Ye
    ,
    Zuofei Ning
    DOI: 10.1061/JPEODX.0000343
    Publisher: ASCE
    Abstract: The purpose of this work is to improve understanding of the aging characteristics of colored ultrathin overlay. In this study, a colored ultrathin overlay was prepared with a binder produced with a waterborne epoxy resin (WER) and styrene butadiene styrene-modified emulsified asphalt (SBS-EA). As part of this study, two conventional ultrathin overlays were prepared to examine the performance feasibility of colored ultrathin overlay compared to traditional overlays. An indoor artificial accelerated oxidative aging was involved in this work to resemble the outdoor natural aging of pavement. The variation of functional groups in asphalt binder due to aging effect was quantified using Fourier transform infrared spectroscopy (FTIR). In addition, pre- and postaging shear strength, cooling effect, skid resistance, permeability, and wearing resistance of the colored and conventional thin overlays were evaluated. The results showed that the number of endothermic functional groups, carbonyl (C═O) and hydroxyl (−OH) groups, in the binder increased with aging time, further resulting in a decrease in the cooling effect. After aging, the shear strength of the binder also decreased. The iron oxide red faded gradually, its reflectivity to sunlight decreased, and the cooling effect of the aged colored ultrathin overlay also decreased. However, the cooling effect of the overlay was leveraged due to the presence of iron oxide red. The shear strength, skid resistance, permeability, and wearing resistance of the overlay decreased to different degrees after aging, but the aging resistance of the colored ultrathin overlay was better than that of the traditional overlays due to the presence of the WER and iron oxide red. Because the aged colored ultra-thin overlay manifests promising cooling effect, bonding strength, and performance, it offers a good preventive maintenance strategy for pavement.
    • Download: (1.602Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aging Characteristics of a Colored Ultrathin Overlay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282777
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorXuelian Li
    contributor authorLe Yang
    contributor authorSang Luo
    contributor authorXiaojin Song
    contributor authorLiang Fan
    contributor authorJijiang Chen
    contributor authorAboelkasim Diab
    contributor authorJunhong Ye
    contributor authorZuofei Ning
    date accessioned2022-05-07T20:42:04Z
    date available2022-05-07T20:42:04Z
    date issued2022-02-09
    identifier otherJPEODX.0000343.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282777
    description abstractThe purpose of this work is to improve understanding of the aging characteristics of colored ultrathin overlay. In this study, a colored ultrathin overlay was prepared with a binder produced with a waterborne epoxy resin (WER) and styrene butadiene styrene-modified emulsified asphalt (SBS-EA). As part of this study, two conventional ultrathin overlays were prepared to examine the performance feasibility of colored ultrathin overlay compared to traditional overlays. An indoor artificial accelerated oxidative aging was involved in this work to resemble the outdoor natural aging of pavement. The variation of functional groups in asphalt binder due to aging effect was quantified using Fourier transform infrared spectroscopy (FTIR). In addition, pre- and postaging shear strength, cooling effect, skid resistance, permeability, and wearing resistance of the colored and conventional thin overlays were evaluated. The results showed that the number of endothermic functional groups, carbonyl (C═O) and hydroxyl (−OH) groups, in the binder increased with aging time, further resulting in a decrease in the cooling effect. After aging, the shear strength of the binder also decreased. The iron oxide red faded gradually, its reflectivity to sunlight decreased, and the cooling effect of the aged colored ultrathin overlay also decreased. However, the cooling effect of the overlay was leveraged due to the presence of iron oxide red. The shear strength, skid resistance, permeability, and wearing resistance of the overlay decreased to different degrees after aging, but the aging resistance of the colored ultrathin overlay was better than that of the traditional overlays due to the presence of the WER and iron oxide red. Because the aged colored ultra-thin overlay manifests promising cooling effect, bonding strength, and performance, it offers a good preventive maintenance strategy for pavement.
    publisherASCE
    titleAging Characteristics of a Colored Ultrathin Overlay
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000343
    journal fristpage04022009
    journal lastpage04022009-9
    page9
    treeJournal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian