Show simple item record

contributor authorJintao Zhang
contributor authorWei Zhang
contributor authorQin Lu
contributor authorJin Zhu
contributor authorAmvrossios C. Bagtzoglou
date accessioned2022-05-07T20:41:10Z
date available2022-05-07T20:41:10Z
date issued2022-03-22
identifier otherAJRUA6.0001232.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282752
description abstractExtreme weather events with an increased frequency have caused widespread damages to overhead power distribution systems (OPDS), an essential lifeline infrastructure, resulting in enormous societal and economic losses for communities. Cascading failure is a critical issue within OPDSs and starts with the failure of a system component, such as a pole, leading to large power outages. Therefore, the resilient assessment of OPDSs under extreme weather events could help evaluate system vulnerability and the performance of recovery strategies. Traditionally, the assessment is performed using an unweighted network based on topology, but this lacks the inclusion of OPDS structural properties. Therefore, a resilient assessment framework for OPDS subject to hurricane winds is proposed in this study with the integration of structural properties to consider the impact of system safety. Instead of the traditional unweighted network, a fragility-weighted topological network is formed to evaluate the performance of an OPDS against cascading failure. The system is found to be more vulnerable under an intentional failure scenario based on a comparison of performance under different attack scenarios. In addition, the impact of electricity load redistribution within the system can be obtained by performing dynamic analysis. Finally, different restoration strategies are included in the framework for comparison. Postdisruption restoration plans can be optimized in terms of recovery speed to benefit utility managers and decision makers from the improved resilience.
publisherASCE
titleA Fragility-Weighted Topological Network for Resilient Assessment of Overhead Power Distribution System Subjected to Hurricane Winds
typeJournal Paper
journal volume8
journal issue2
journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
identifier doi10.1061/AJRUA6.0001232
journal fristpage04022015
journal lastpage04022015-11
page11
treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record