YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Trends in the Climatology of Winter Wind Wave Heights in a Back-Barrier Bay in Western North Atlantic Ocean

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2022:;Volume ( 148 ):;issue: 003::page 04022005
    Author:
    Hoda El Safty
    ,
    Reza Marsooli
    DOI: 10.1061/(ASCE)WW.1943-5460.0000705
    Publisher: ASCE
    Abstract: Wave climate studies mainly focus on the wave climatology in the open ocean. There is currently a limited understanding of trends and changes in the wave climatology of coastal waters. This study quantifies climate-induced trends in winter wind-generated wave heights in Jamaica Bay, a back-barrier bay in the western North Atlantic Ocean. A high-resolution hydrodynamic-wave model, forced by pressure and wind fields from a local weather station and the ERA5 reanalysis, is utilized to generate a 30-year (1990–2019) hindcast of wave heights. The model accuracy is evaluated using existing wave height measurements, and the bias in model results is calculated and subtracted from the simulated wave heights. The bias-corrected hindcast is then utilized to determine the wave height climatology and the trends in the mean and extreme (95th percentile) significant wave heights. The study shows that the winter mean and extreme wave heights in Jamaica Bay are 0.12 and 0.5 m, respectively. Based on the trends detected using a linear regression method, the mean and extreme wave heights, averaged in the study area, have increased, respectively, up to 1 and 3 mm/year. The rates of increase in extreme wave heights are generally larger than that in the mean wave height. A decadal trend analysis indicates that the rates of change in wave heights vary in different decades, suggesting that the wave climate change in Jamaica Bay is nonstationary. The increasing waves could cause adverse effects on salt marsh ecosystems in Jamaica Bay, which have already experienced marsh losses since the past century.
    • Download: (2.303Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Trends in the Climatology of Winter Wind Wave Heights in a Back-Barrier Bay in Western North Atlantic Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282706
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorHoda El Safty
    contributor authorReza Marsooli
    date accessioned2022-05-07T20:38:54Z
    date available2022-05-07T20:38:54Z
    date issued2022-5-1
    identifier other(ASCE)WW.1943-5460.0000705.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282706
    description abstractWave climate studies mainly focus on the wave climatology in the open ocean. There is currently a limited understanding of trends and changes in the wave climatology of coastal waters. This study quantifies climate-induced trends in winter wind-generated wave heights in Jamaica Bay, a back-barrier bay in the western North Atlantic Ocean. A high-resolution hydrodynamic-wave model, forced by pressure and wind fields from a local weather station and the ERA5 reanalysis, is utilized to generate a 30-year (1990–2019) hindcast of wave heights. The model accuracy is evaluated using existing wave height measurements, and the bias in model results is calculated and subtracted from the simulated wave heights. The bias-corrected hindcast is then utilized to determine the wave height climatology and the trends in the mean and extreme (95th percentile) significant wave heights. The study shows that the winter mean and extreme wave heights in Jamaica Bay are 0.12 and 0.5 m, respectively. Based on the trends detected using a linear regression method, the mean and extreme wave heights, averaged in the study area, have increased, respectively, up to 1 and 3 mm/year. The rates of increase in extreme wave heights are generally larger than that in the mean wave height. A decadal trend analysis indicates that the rates of change in wave heights vary in different decades, suggesting that the wave climate change in Jamaica Bay is nonstationary. The increasing waves could cause adverse effects on salt marsh ecosystems in Jamaica Bay, which have already experienced marsh losses since the past century.
    publisherASCE
    titleTrends in the Climatology of Winter Wind Wave Heights in a Back-Barrier Bay in Western North Atlantic Ocean
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000705
    journal fristpage04022005
    journal lastpage04022005-11
    page11
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2022:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian