YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Graph Neural Networks for State Estimation in Water Distribution Systems: Application of Supervised and Semisupervised Learning

    Source: Journal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 005::page 04022018
    Author:
    Lu Xing
    ,
    Lina Sela
    DOI: 10.1061/(ASCE)WR.1943-5452.0001550
    Publisher: ASCE
    Abstract: Emerging trends of resilient and reliable water infrastructure advocate for the development of efficient state estimation (SE) techniques in water distribution systems (WDSs). SE refers to estimating the flows and heads in the WDS at unmonitored locations based on measurements collected from limited monitoring locations. Current physics-based SE methods typically require more exhaustive than readily available information about the WDS and are computationally demanding to attain real-time SE fully. Using neural networks for SE is a promising avenue because neural networks are more adaptable to the availability of sensory data and can shift most of the computation efforts to the offline training phase. Once trained, the inference is more computationally efficient compared to the physics-based SE methods. This work proposes a graph neural network (GNN) model for SE in WDSs. Unlike traditional neural networks, GNNs are more suitable for the SE problem for two main reasons: (1) given a limited number of monitoring locations, the SE problem inherently requires a semisupervised learning method, and (2) GNNs enable learning from the graph structure of a WDS, thus providing a mechanism to incorporate the functional relationships between the monitored and unmonitored locations and incorporate the physical laws during the training process. To evaluate the performance of GNNs for SE, we tested supervised and semisupervised approaches, investigated the impact of GNN architecture choices on its performance, and examined model performance under different levels of noise in the training data. The results demonstrate that GNNs are promising for SE for their ability to learn from graph structure with a limited amount of information while exhibiting robustness to noise. This study contributes toward advancing real-time GNN-based SE in WDSs. Future research is needed to incorporate various hydraulic devices and investigate the scalability of GNNs to large-scale WDSs.
    • Download: (1.202Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Graph Neural Networks for State Estimation in Water Distribution Systems: Application of Supervised and Semisupervised Learning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282659
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorLu Xing
    contributor authorLina Sela
    date accessioned2022-05-07T20:36:57Z
    date available2022-05-07T20:36:57Z
    date issued2022-03-14
    identifier other(ASCE)WR.1943-5452.0001550.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282659
    description abstractEmerging trends of resilient and reliable water infrastructure advocate for the development of efficient state estimation (SE) techniques in water distribution systems (WDSs). SE refers to estimating the flows and heads in the WDS at unmonitored locations based on measurements collected from limited monitoring locations. Current physics-based SE methods typically require more exhaustive than readily available information about the WDS and are computationally demanding to attain real-time SE fully. Using neural networks for SE is a promising avenue because neural networks are more adaptable to the availability of sensory data and can shift most of the computation efforts to the offline training phase. Once trained, the inference is more computationally efficient compared to the physics-based SE methods. This work proposes a graph neural network (GNN) model for SE in WDSs. Unlike traditional neural networks, GNNs are more suitable for the SE problem for two main reasons: (1) given a limited number of monitoring locations, the SE problem inherently requires a semisupervised learning method, and (2) GNNs enable learning from the graph structure of a WDS, thus providing a mechanism to incorporate the functional relationships between the monitored and unmonitored locations and incorporate the physical laws during the training process. To evaluate the performance of GNNs for SE, we tested supervised and semisupervised approaches, investigated the impact of GNN architecture choices on its performance, and examined model performance under different levels of noise in the training data. The results demonstrate that GNNs are promising for SE for their ability to learn from graph structure with a limited amount of information while exhibiting robustness to noise. This study contributes toward advancing real-time GNN-based SE in WDSs. Future research is needed to incorporate various hydraulic devices and investigate the scalability of GNNs to large-scale WDSs.
    publisherASCE
    titleGraph Neural Networks for State Estimation in Water Distribution Systems: Application of Supervised and Semisupervised Learning
    typeJournal Paper
    journal volume148
    journal issue5
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001550
    journal fristpage04022018
    journal lastpage04022018-14
    page14
    treeJournal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian