YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Operation Rules for Parallel Reservoir Systems with Distributed Water Demands

    Source: Journal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 006::page 04022020
    Author:
    Weisa Meng
    ,
    Wenhua Wan
    ,
    Jianshi Zhao
    ,
    Zhongjing Wang
    DOI: 10.1061/(ASCE)WR.1943-5452.0001537
    Publisher: ASCE
    Abstract: This paper addresses the doubts regarding the spatial characteristics of the commonly used rules for parallel reservoir system operation. The rules based on aggregation-decomposition determine the system total release first and then assign this release to individual reservoirs, without considering the water demand distribution in the river network. In this paper, a conceptual model for parallel reservoir systems with distributed water demands is proposed. Three specific optimality conditions are derived for determining the optimal analytical solution. A rigorous proof shows that the aggregation-decomposition-based rules are a special case of the derived rules. An efficient algorithm is then developed based on the optimality conditions and shortage allocation index (SAI), in which a larger SAI indicates taking a higher percentage of the system water shortage, as release or storage. Unlike traditional algorithms that modify the violated variables empirically, we propose a criterion in terms of relative deviation indicators to determine the crucial priority of variable modification. This criterion can effectively address constraint violations. The optimal rules along with the solution algorithm are then demonstrated by the operation of a parallel reservoir system in the Shiyang River Basin, China. The results show that the proposed rules and algorithm are more efficient and effective than traditional algorithms and aggregation-decomposition-based rules, especially in dry seasons with more binding constraints.
    • Download: (2.260Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Operation Rules for Parallel Reservoir Systems with Distributed Water Demands

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282646
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorWeisa Meng
    contributor authorWenhua Wan
    contributor authorJianshi Zhao
    contributor authorZhongjing Wang
    date accessioned2022-05-07T20:35:43Z
    date available2022-05-07T20:35:43Z
    date issued2022-03-16
    identifier other(ASCE)WR.1943-5452.0001537.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282646
    description abstractThis paper addresses the doubts regarding the spatial characteristics of the commonly used rules for parallel reservoir system operation. The rules based on aggregation-decomposition determine the system total release first and then assign this release to individual reservoirs, without considering the water demand distribution in the river network. In this paper, a conceptual model for parallel reservoir systems with distributed water demands is proposed. Three specific optimality conditions are derived for determining the optimal analytical solution. A rigorous proof shows that the aggregation-decomposition-based rules are a special case of the derived rules. An efficient algorithm is then developed based on the optimality conditions and shortage allocation index (SAI), in which a larger SAI indicates taking a higher percentage of the system water shortage, as release or storage. Unlike traditional algorithms that modify the violated variables empirically, we propose a criterion in terms of relative deviation indicators to determine the crucial priority of variable modification. This criterion can effectively address constraint violations. The optimal rules along with the solution algorithm are then demonstrated by the operation of a parallel reservoir system in the Shiyang River Basin, China. The results show that the proposed rules and algorithm are more efficient and effective than traditional algorithms and aggregation-decomposition-based rules, especially in dry seasons with more binding constraints.
    publisherASCE
    titleOptimal Operation Rules for Parallel Reservoir Systems with Distributed Water Demands
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001537
    journal fristpage04022020
    journal lastpage04022020-20
    page20
    treeJournal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian