YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Incorporating Mid-Term Temperature Predictions into Streamflow Forecasts and Operational Reservoir Projections in the Colorado River Basin

    Source: Journal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 004::page 04022007
    Author:
    Erin Towler
    ,
    David Woodson
    ,
    Sarah Baker
    ,
    Ming Ge
    ,
    James Prairie
    ,
    Balaji Rajagopalan
    ,
    Seth Shanahan
    ,
    Rebecca Smith
    DOI: 10.1061/(ASCE)WR.1943-5452.0001534
    Publisher: ASCE
    Abstract: Skillful mid-term temperature predictions (up to five years out) offer a potential opportunity for water managers, especially in the Colorado River Basin (CRB), where streamflows are sensitive to temperature. The purpose of this paper is to develop and demonstrate a framework for how mid-term temperature predictions can be incorporated into streamflow forecasting and operational projections. The framework consists of three steps. First, 5-year average temperature predictions are obtained from two large ensemble climate model datasets. Second, hindcasts from the Ensemble Streamflow Predictions (ESP), an operationally used forecast method in the CRB, are post-processed using the 5-year average temperature predictions; specifically, a tercile-based block bootstrap resampling approach generates weighted streamflow ensembles called WeighESP. Third, ESP and WeighESP are run through an operational model, the Colorado River Mid-term Modeling System (CRMMS). Compared to ESP, WeighESP marginally improves streamflow forecast accuracy in the multi-year hindcasts up to five years out (i.e., years 1-5, 2-5, 2-4, and 2-3). The multi-year hindcasts show median annual root mean square error (RMSE) improvements between 437,000 and 771,000  m3 (354 and 625 thousand acre-feet). Improvements in streamflow accuracy are more pronounced for the most recent hindcast run dates through 2016, partially due to ESP being run with climate time series data from 1981 to 2010. Next, CRMMS translates the streamflow forecasts into operational projections of end of calendar year (EOCY) pool elevations. WeighESP improves the accuracy of EOCY predictions, but mainly for longer leads of 3- and 4-years. For the 4-year lead, the median RMSE improves by 1.1 and 0.7 m (3.5 and 2.3 ft) for Lakes Powell and Mead, respectively. Although marginal improvements in pool elevation could be beneficial, not being realized until longer leads is a limitation. This study describes the need for better predictive tools at the mid-term timescale and underscores the importance of evaluating improvements in streamflow forecasts in decision-relevant terms.
    • Download: (2.355Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Incorporating Mid-Term Temperature Predictions into Streamflow Forecasts and Operational Reservoir Projections in the Colorado River Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282644
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorErin Towler
    contributor authorDavid Woodson
    contributor authorSarah Baker
    contributor authorMing Ge
    contributor authorJames Prairie
    contributor authorBalaji Rajagopalan
    contributor authorSeth Shanahan
    contributor authorRebecca Smith
    date accessioned2022-05-07T20:35:34Z
    date available2022-05-07T20:35:34Z
    date issued2022-02-09
    identifier other(ASCE)WR.1943-5452.0001534.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282644
    description abstractSkillful mid-term temperature predictions (up to five years out) offer a potential opportunity for water managers, especially in the Colorado River Basin (CRB), where streamflows are sensitive to temperature. The purpose of this paper is to develop and demonstrate a framework for how mid-term temperature predictions can be incorporated into streamflow forecasting and operational projections. The framework consists of three steps. First, 5-year average temperature predictions are obtained from two large ensemble climate model datasets. Second, hindcasts from the Ensemble Streamflow Predictions (ESP), an operationally used forecast method in the CRB, are post-processed using the 5-year average temperature predictions; specifically, a tercile-based block bootstrap resampling approach generates weighted streamflow ensembles called WeighESP. Third, ESP and WeighESP are run through an operational model, the Colorado River Mid-term Modeling System (CRMMS). Compared to ESP, WeighESP marginally improves streamflow forecast accuracy in the multi-year hindcasts up to five years out (i.e., years 1-5, 2-5, 2-4, and 2-3). The multi-year hindcasts show median annual root mean square error (RMSE) improvements between 437,000 and 771,000  m3 (354 and 625 thousand acre-feet). Improvements in streamflow accuracy are more pronounced for the most recent hindcast run dates through 2016, partially due to ESP being run with climate time series data from 1981 to 2010. Next, CRMMS translates the streamflow forecasts into operational projections of end of calendar year (EOCY) pool elevations. WeighESP improves the accuracy of EOCY predictions, but mainly for longer leads of 3- and 4-years. For the 4-year lead, the median RMSE improves by 1.1 and 0.7 m (3.5 and 2.3 ft) for Lakes Powell and Mead, respectively. Although marginal improvements in pool elevation could be beneficial, not being realized until longer leads is a limitation. This study describes the need for better predictive tools at the mid-term timescale and underscores the importance of evaluating improvements in streamflow forecasts in decision-relevant terms.
    publisherASCE
    titleIncorporating Mid-Term Temperature Predictions into Streamflow Forecasts and Operational Reservoir Projections in the Colorado River Basin
    typeJournal Paper
    journal volume148
    journal issue4
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001534
    journal fristpage04022007
    journal lastpage04022007-13
    page13
    treeJournal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian