YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Order Global Algorithm for the Pressure-Driven Modeling of Water Distribution Networks

    Source: Journal of Water Resources Planning and Management:;2021:;Volume ( 148 ):;issue: 003::page 04021109
    Author:
    Enrico Creaco
    ,
    Armando Di Nardo
    ,
    Michele Iervolino
    ,
    Giovanni Santonastaso
    DOI: 10.1061/(ASCE)WR.1943-5452.0001524
    Publisher: ASCE
    Abstract: This paper presents a novel algorithm with improved convergence and robustness for the pressure-driven modeling of water distribution networks (WDNs), to be implemented as hydraulic engine in the fourth release of the SWANP version 4.0 software. The innovative approach is based on increasing the order of convergence, which is quadratic for algorithms obtained from the Newton Raphson linearization of the equations for WDN resolution. As an example, the cubic order of convergence is obtained by evaluating system matrices at the generic iteration in a more refined way to account for the curvature of the hyperplane associated with the system in the direction of the Newton Raphson step. To show the benefits of the methodology, a third-order algorithm is constructed and compared with a traditional second-order. Both algorithms are based on the direct pressure-driven formulation expressing outflows as a function of service pressure and are equipped with the dampening of the Newton Raphson step. Applications on two case studies of different size, in which challenging pressure-driven conditions are created through demand amplification and segment isolation scenarios, prove that the methodology always reduces the total number of iterations required for convergence and the application of the step dampening. Overall, the results also show that the more stable convergence behavior is accompanied by an appreciable reduction in computation times. Further analyses proved that the third-order algorithm has similar convergence properties to algorithms based on the inverse pressure-driven formulation recently proposed in the scientific literature and can therefore be considered as a valid alternative to these algorithms.
    • Download: (1.851Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Order Global Algorithm for the Pressure-Driven Modeling of Water Distribution Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282635
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorEnrico Creaco
    contributor authorArmando Di Nardo
    contributor authorMichele Iervolino
    contributor authorGiovanni Santonastaso
    date accessioned2022-05-07T20:34:59Z
    date available2022-05-07T20:34:59Z
    date issued2021-12-31
    identifier other(ASCE)WR.1943-5452.0001524.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282635
    description abstractThis paper presents a novel algorithm with improved convergence and robustness for the pressure-driven modeling of water distribution networks (WDNs), to be implemented as hydraulic engine in the fourth release of the SWANP version 4.0 software. The innovative approach is based on increasing the order of convergence, which is quadratic for algorithms obtained from the Newton Raphson linearization of the equations for WDN resolution. As an example, the cubic order of convergence is obtained by evaluating system matrices at the generic iteration in a more refined way to account for the curvature of the hyperplane associated with the system in the direction of the Newton Raphson step. To show the benefits of the methodology, a third-order algorithm is constructed and compared with a traditional second-order. Both algorithms are based on the direct pressure-driven formulation expressing outflows as a function of service pressure and are equipped with the dampening of the Newton Raphson step. Applications on two case studies of different size, in which challenging pressure-driven conditions are created through demand amplification and segment isolation scenarios, prove that the methodology always reduces the total number of iterations required for convergence and the application of the step dampening. Overall, the results also show that the more stable convergence behavior is accompanied by an appreciable reduction in computation times. Further analyses proved that the third-order algorithm has similar convergence properties to algorithms based on the inverse pressure-driven formulation recently proposed in the scientific literature and can therefore be considered as a valid alternative to these algorithms.
    publisherASCE
    titleHigh-Order Global Algorithm for the Pressure-Driven Modeling of Water Distribution Networks
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001524
    journal fristpage04021109
    journal lastpage04021109-14
    page14
    treeJournal of Water Resources Planning and Management:;2021:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian