YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pressure-Leak Duality for Leak Detection and Localization in Water Distribution Systems

    Source: Journal of Water Resources Planning and Management:;2021:;Volume ( 148 ):;issue: 003::page 04021106
    Author:
    David B. Steffelbauer
    ,
    Jochen Deuerlein
    ,
    Denis Gilbert
    ,
    Edo Abraham
    ,
    Olivier Piller
    DOI: 10.1061/(ASCE)WR.1943-5452.0001515
    Publisher: ASCE
    Abstract: Water utilities are challenged to reduce their water losses through detecting, localizing, and repairing leaks as quickly as possible in their aging distribution systems. In this work, we solve this challenging problem by detecting multiple leaks simultaneously in a water distribution network for the Battle of the Leak Detection and Isolation Methods. The performance of leak detection and localization depends on how well the system roughness and demand are calibrated. In addition, existing leaks affect the diagnosis performance unless they are identified and explicitly represented in the model. To circumvent this chicken-and-egg dilemma, we decompose the problem into multiple levels of decision-making (a hierarchical approach) where we iteratively improve the water distribution network model and so are able to solve the multileak diagnosis problem. First, a combination of time series and cluster analysis is used on smart meter data to build patterns for demand models. Second, point and interval estimates of pipe roughnesses are retrieved using least squares to calibrate the hydraulic model, utilizing the demand models from the first step. Finally, the calibrated primal model is transformed into a dual model that intrinsically combines sensor data and network hydraulics. This dual model automatically converts small pressure deviations caused by leaks into sharp and localized signals in the form of virtual leak flows. Analytical derivations of sensitivities with respect to these virtual leak flows are calculated and used to estimate the leakage impulse responses at candidate nodes. Subsequently, we use the dual network to (1) detect the start time of the leaks, and (2) compute the Pearson correlation of pressure residuals, which allows further localization of leaks. This novel dual modeling approach resulted in the highest true-positive rates for leak isolation among all participating teams in the competition.
    • Download: (2.170Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pressure-Leak Duality for Leak Detection and Localization in Water Distribution Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282628
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorDavid B. Steffelbauer
    contributor authorJochen Deuerlein
    contributor authorDenis Gilbert
    contributor authorEdo Abraham
    contributor authorOlivier Piller
    date accessioned2022-05-07T20:34:36Z
    date available2022-05-07T20:34:36Z
    date issued2021-12-24
    identifier other(ASCE)WR.1943-5452.0001515.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282628
    description abstractWater utilities are challenged to reduce their water losses through detecting, localizing, and repairing leaks as quickly as possible in their aging distribution systems. In this work, we solve this challenging problem by detecting multiple leaks simultaneously in a water distribution network for the Battle of the Leak Detection and Isolation Methods. The performance of leak detection and localization depends on how well the system roughness and demand are calibrated. In addition, existing leaks affect the diagnosis performance unless they are identified and explicitly represented in the model. To circumvent this chicken-and-egg dilemma, we decompose the problem into multiple levels of decision-making (a hierarchical approach) where we iteratively improve the water distribution network model and so are able to solve the multileak diagnosis problem. First, a combination of time series and cluster analysis is used on smart meter data to build patterns for demand models. Second, point and interval estimates of pipe roughnesses are retrieved using least squares to calibrate the hydraulic model, utilizing the demand models from the first step. Finally, the calibrated primal model is transformed into a dual model that intrinsically combines sensor data and network hydraulics. This dual model automatically converts small pressure deviations caused by leaks into sharp and localized signals in the form of virtual leak flows. Analytical derivations of sensitivities with respect to these virtual leak flows are calculated and used to estimate the leakage impulse responses at candidate nodes. Subsequently, we use the dual network to (1) detect the start time of the leaks, and (2) compute the Pearson correlation of pressure residuals, which allows further localization of leaks. This novel dual modeling approach resulted in the highest true-positive rates for leak isolation among all participating teams in the competition.
    publisherASCE
    titlePressure-Leak Duality for Leak Detection and Localization in Water Distribution Systems
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001515
    journal fristpage04021106
    journal lastpage04021106-13
    page13
    treeJournal of Water Resources Planning and Management:;2021:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian