YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Resonance Enhancement for Leak Detection in Pipelines Using Fluid Transients and Convolutional Neural Networks

    Source: Journal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 003::page 04022001
    Author:
    Jessica Bohorquez
    ,
    Martin F. Lambert
    ,
    Bradley Alexander
    ,
    Angus R. Simpson
    ,
    Derek Abbott
    DOI: 10.1061/(ASCE)WR.1943-5452.0001504
    Publisher: ASCE
    Abstract: Water losses through leakage represent a significant problem for asset management in water distribution systems. The interpretation of fluid transient pressure waves after the generation of a transient event has been previously used as a technique to locate and characterize leaks, but existing approaches are often both model-driven and limited to the existing knowledge of the system. The potential of using artificial neural networks (ANN) and fluid transient waves to detect, locate, and characterize anomalies in water pipelines has recently been proposed. However, its application in more realistic conditions (e.g., in the presence of background pressure fluctuations) has proven challenging. To address this, one alternative to enhance the response of any nonlinear system includes the introduction of artificial noise, a phenomenon known as stochastic resonance. In this paper, the enhanced detection of leaks in pressurized pipelines via the deployment of stochastic resonance is demonstrated. This paper harnesses this approach by presenting a methodology for the active inspection of pipelines using convolutional neural networks (CNNs). This methodology finds the optimal artificial noise intensity to be introduced into the training dataset for a set of CNNs. The methodology has been applied to a real pipeline in a laboratory at the University of Adelaide in which 14 transient experimental tests were conducted. The results indicated that the addition of noise to the transient pressure head training samples significantly enhances the CNN predictions for the leak location highlighting the existence of an optimum noise intensity to obtain both accurate and reliable results. When trained with the optimum noise intensity, the CNNs were able to locate leaks with an average error of 0.59% in terms of the actual location (in a 37.24-m long pipeline), demonstrating the promising potential of developing techniques based on CNNs to detect leaks and anomalies in water pipelines.
    • Download: (1.797Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Resonance Enhancement for Leak Detection in Pipelines Using Fluid Transients and Convolutional Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282618
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorJessica Bohorquez
    contributor authorMartin F. Lambert
    contributor authorBradley Alexander
    contributor authorAngus R. Simpson
    contributor authorDerek Abbott
    date accessioned2022-05-07T20:34:07Z
    date available2022-05-07T20:34:07Z
    date issued2022-01-04
    identifier other(ASCE)WR.1943-5452.0001504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282618
    description abstractWater losses through leakage represent a significant problem for asset management in water distribution systems. The interpretation of fluid transient pressure waves after the generation of a transient event has been previously used as a technique to locate and characterize leaks, but existing approaches are often both model-driven and limited to the existing knowledge of the system. The potential of using artificial neural networks (ANN) and fluid transient waves to detect, locate, and characterize anomalies in water pipelines has recently been proposed. However, its application in more realistic conditions (e.g., in the presence of background pressure fluctuations) has proven challenging. To address this, one alternative to enhance the response of any nonlinear system includes the introduction of artificial noise, a phenomenon known as stochastic resonance. In this paper, the enhanced detection of leaks in pressurized pipelines via the deployment of stochastic resonance is demonstrated. This paper harnesses this approach by presenting a methodology for the active inspection of pipelines using convolutional neural networks (CNNs). This methodology finds the optimal artificial noise intensity to be introduced into the training dataset for a set of CNNs. The methodology has been applied to a real pipeline in a laboratory at the University of Adelaide in which 14 transient experimental tests were conducted. The results indicated that the addition of noise to the transient pressure head training samples significantly enhances the CNN predictions for the leak location highlighting the existence of an optimum noise intensity to obtain both accurate and reliable results. When trained with the optimum noise intensity, the CNNs were able to locate leaks with an average error of 0.59% in terms of the actual location (in a 37.24-m long pipeline), demonstrating the promising potential of developing techniques based on CNNs to detect leaks and anomalies in water pipelines.
    publisherASCE
    titleStochastic Resonance Enhancement for Leak Detection in Pipelines Using Fluid Transients and Convolutional Neural Networks
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001504
    journal fristpage04022001
    journal lastpage04022001-15
    page15
    treeJournal of Water Resources Planning and Management:;2022:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian