YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Behavior of Strengthened RC Columns under Combined Loadings

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 006::page 05022005
    Author:
    Hua Huang
    ,
    Mengxue Guo
    ,
    Wei Zhang
    ,
    Min Huang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001871
    Publisher: ASCE
    Abstract: Twenty-five reinforced concrete (RC) columns of section size 250 × 250 mm were designed and tested to study the seismic response considering the effect of loading case, strengthening method, and the predamage level, containing 21 columns reinforced with high-performance ferrocement laminate (HPFL)-bonded steel plates (BSPs), i.e., the intact strengthened columns (ISCs), earthquake-damaged strengthened columns (EDSCs), corrosion-damaged strengthened columns (CSCs) and coupled-predamaged strengthened columns (CPSCs). The bearing capacity of the specimens under the four different types of loading methods is ranked as follows: uniaxial compression–bending–shear (CBS) members, biaxial CBS members, biaxial CBS-torsion (CBST) members, and uniaxial CBST members. Compared with nonstrengthened specimens, the cracks of the strengthened RC columns are more fully developed, and the failure modes have been changed after strengthening. The failure modes and load–deformation curves had little significant difference for the strengthened RC columns with different damage under combined loading levels. The bearing capacity of strengthened RC columns with the applied loading of 400 kN improved, which increased to 60.1%–114.7%, 29.9%–103%, 65.2%–127%, and 49.2%–104.5% for ISCs, EDSCs, CSCs, and CPSCs, respectively. Moreover, the bearing capacity of specimens decreased due to the existence of horizontal eccentricity. Finally, based on the degraded trilinear restoring force model, the strengthened influence coefficient for loading α and displacement β and the torsion influence coefficient for loading γ and displacement ξ were introduced. A modified restoring force model of RC columns was presented, reflecting the loading method, predamage level, and strengthening method. The theoretical calculation values align with the test load–deformation curves, and the mean absolute error is almost less than 15%.
    • Download: (2.745Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Behavior of Strengthened RC Columns under Combined Loadings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282571
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorHua Huang
    contributor authorMengxue Guo
    contributor authorWei Zhang
    contributor authorMin Huang
    date accessioned2022-05-07T20:32:20Z
    date available2022-05-07T20:32:20Z
    date issued2022-6-1
    identifier other(ASCE)BE.1943-5592.0001871.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282571
    description abstractTwenty-five reinforced concrete (RC) columns of section size 250 × 250 mm were designed and tested to study the seismic response considering the effect of loading case, strengthening method, and the predamage level, containing 21 columns reinforced with high-performance ferrocement laminate (HPFL)-bonded steel plates (BSPs), i.e., the intact strengthened columns (ISCs), earthquake-damaged strengthened columns (EDSCs), corrosion-damaged strengthened columns (CSCs) and coupled-predamaged strengthened columns (CPSCs). The bearing capacity of the specimens under the four different types of loading methods is ranked as follows: uniaxial compression–bending–shear (CBS) members, biaxial CBS members, biaxial CBS-torsion (CBST) members, and uniaxial CBST members. Compared with nonstrengthened specimens, the cracks of the strengthened RC columns are more fully developed, and the failure modes have been changed after strengthening. The failure modes and load–deformation curves had little significant difference for the strengthened RC columns with different damage under combined loading levels. The bearing capacity of strengthened RC columns with the applied loading of 400 kN improved, which increased to 60.1%–114.7%, 29.9%–103%, 65.2%–127%, and 49.2%–104.5% for ISCs, EDSCs, CSCs, and CPSCs, respectively. Moreover, the bearing capacity of specimens decreased due to the existence of horizontal eccentricity. Finally, based on the degraded trilinear restoring force model, the strengthened influence coefficient for loading α and displacement β and the torsion influence coefficient for loading γ and displacement ξ were introduced. A modified restoring force model of RC columns was presented, reflecting the loading method, predamage level, and strengthening method. The theoretical calculation values align with the test load–deformation curves, and the mean absolute error is almost less than 15%.
    publisherASCE
    titleSeismic Behavior of Strengthened RC Columns under Combined Loadings
    typeJournal Paper
    journal volume27
    journal issue6
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001871
    journal fristpage05022005
    journal lastpage05022005-16
    page16
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian